
� C++ Annotated Reference Manual

Version 5.4.1

Peter A. Buhr c
� 1 1995, 1996, 1998, 2000, 2003, 2004, 2005

Peter A. Buhr and Richard A. Stroobosscher c
� 1 1992

January 25, 2007

1Permission is granted to redistribute this manual unmodified in any form; permission is granted to redistribute
modified versions of this manual in any form, provided the modified version explicitly attributes said modifications to
their respective authors, and provided that no modification is made to these terms of redistribution.

Contents

Preface 1

1 � C++ Extensions 3
1.1 Design Requirements . 3
1.2 Elementary Execution Properties . 4
1.3 High-level Execution Constructs . 5

2 � C++ Translator 7
2.1 Extending C++ . 7
2.2 Compile Time Structure of a � C++ Program . 8
2.3 � C++ Runtime Structure . 8

2.3.1 Cluster . 8
2.3.2 Virtual Processor . 9

2.4 � C++ Kernel . 10
2.5 Using the � C++ Translator . 10

2.5.1 Compiling a � C++ Program . 10
2.5.2 Preprocessor Variables . 11

2.6 Labelled Break/Continue . 12
2.7 Coroutine . 13

2.7.1 Coroutine Creation and Destruction . 14
2.7.2 Inherited Members . 15
2.7.3 Coroutine Control and Communication . 17

2.8 Mutex Type . 17
2.9 Scheduling . 20

2.9.1 Implicit Scheduling . 21
2.9.2 External Scheduling . 22

2.9.2.1 Accept Statement . 22
2.9.2.2 Breaking a Rendezvous . 23
2.9.2.3 Accepting the Destructor . 24
2.9.2.4 Commentary . 25

2.9.3 Internal Scheduling . 25
2.9.3.1 Condition Variables and Wait/Signal Statements 25
2.9.3.2 Commentary . 27

2.10 Monitor . 27
2.10.1 Monitor Creation and Destruction . 27
2.10.2 Monitor Control and Communication . 28

2.11 Coroutine Monitor . 29
2.11.1 Coroutine-Monitor Creation and Destruction . 29
2.11.2 Coroutine-Monitor Control and Communication . 29

2.12 Task . 29
2.12.1 Task Creation and Destruction . 29
2.12.2 Inherited Members . 30

iii

iv CONTENTS

2.12.3 Task Control and Communication . 32
2.13 Commentary . 32
2.14 Inheritance . 34
2.15 Explicit Mutual Exclusion and Synchronization . 36

2.15.1 Counting Semaphore . 36
2.15.1.1 Commentary . 37

2.15.2 Lock . 37
2.15.3 Owner Lock . 37
2.15.4 Condition Lock . 38
2.15.5 Barrier . 39

2.16 User Specified Context . 40
2.16.1 Predefined Floating-Point Context . 40

2.17 Implementation Restrictions . 42

3 Input/Output 45
3.1 Nonblocking I/O . 45
3.2 C++ Stream I/O . 45
3.3 UNIX File I/O . 47

3.3.1 File Access . 48
3.4 BSD Sockets . 48

3.4.1 Client . 50
3.4.2 Server . 52
3.4.3 Server Acceptor . 54

4 Exceptions 57
4.1 EHM . 57
4.2 � C++ EHM . 58
4.3 Exception Type . 58

4.3.1 Creation and Destruction . 59
4.3.2 Inherited Members . 59

4.4 Raising . 60
4.4.1 Nonlocal Propagation . 60
4.4.2 Enabling/Disabling Propagation . 61
4.4.3 Concurrent Propagation . 63

4.5 Handler . 63
4.5.1 Termination . 63
4.5.2 Resumption . 63

4.5.2.1 Recursive Resuming . 66
4.5.2.2 Preventing Recursive Resuming . 66
4.5.2.3 Commentary . 68

4.6 Bound Exceptions . 68
4.6.1 Deficiencies of Standard C++ Exception Handling . 69
4.6.2 Object Binding . 70
4.6.3 Bound Handlers . 70

4.6.3.1 Matching . 70
4.6.3.2 Termination . 70
4.6.3.3 Resumption . 70

4.7 Inheritance . 70
4.8 Predefined Exception Routines . 72

4.8.1 terminate/set terminate . 72
4.8.2 unexpected/set unexpected . 72
4.8.3 uncaught exception . 73

4.9 Programming with Exceptions . 73
4.9.1 Throw Exception-Type . 74

CONTENTS v

4.9.2 Resume Exception-Type . 74
4.9.3 Dual Exception-Type . 74

4.10 Predefined Exception-Types . 74
4.10.1 Implicitly Enabled Exception-Types . 74
4.10.2 Breaking a Rendezvous . 75

5 Cancellation 77
5.1 Using Cancellation . 77
5.2 Enabling/Disabling Cancellation . 77
5.3 Commentary . 79

6 Errors 81
6.1 Static (Compile-time) Warnings/Errors . 81
6.2 Dynamic (Runtime) Warnings/Errors . 85

6.2.1 Assertions . 85
6.2.2 Termination . 85
6.2.3 Messages . 86

6.2.3.1 Default Actions . 86
6.2.3.2 Coroutine . 90
6.2.3.3 Mutex Type . 93
6.2.3.4 Task . 97
6.2.3.5 Condition Variable . 98
6.2.3.6 Accept Statement . 99
6.2.3.7 Calendar . 100
6.2.3.8 Locks . 100
6.2.3.9 Cluster . 100
6.2.3.10 Heap . 101
6.2.3.11 I/O . 102
6.2.3.12 Processor . 102
6.2.3.13 UNIX . 102

7 � C++ Kernel 105
7.1 Pre-emptive Scheduling and Critical Sections . 105
7.2 Memory Management . 105
7.3 Cluster . 105
7.4 Processors . 107

7.4.1 Implicit Task Scheduling . 109
7.4.2 Idle Virtual Processors . 110
7.4.3 Blocking Virtual Processors . 110

8 Real-Time 113
8.1 Time-Defined Delays . 113
8.2 Duration and Time . 113
8.3 Timeout Operations . 115

8.3.1 Accept . 116
8.3.2 I/O . 116

8.4 Clock . 117
8.5 Periodic Task . 118
8.6 Sporadic Task . 119
8.7 Aperiodic Task . 120
8.8 Priority Inheritance Protocol . 120
8.9 Real-Time Scheduling . 121
8.10 User-Supplied Scheduler . 122
8.11 Real-Time Cluster . 123

vi CONTENTS

8.11.1 Deadline Monotonic Scheduler . 123

9 Miscellaneous 127
9.1 Default Values . 127

9.1.1 Task . 127
9.1.2 Processor . 127
9.1.3 Heap . 128

9.2 Symbolic Debugging . 128
9.3 Installation Requirements . 128
9.4 Installation . 128
9.5 Reporting Problems . 129
9.6 Contributors . 129

A � C++ Grammar 131

B Data Structure Library (DSL) 135
B.1 Stack . 135

B.1.1 Iterator . 136
B.2 Queue . 136

B.2.1 Iterator . 137
B.3 Sequence . 138

B.3.1 Iterator . 139

C Example Programs 141
C.1 Readers And Writer . 141
C.2 Bounded Buffer . 143

C.2.1 Using Monitor Accept . 143
C.2.2 Using Monitor Condition . 144
C.2.3 Using Task . 145
C.2.4 Using P/V . 146

C.3 Disk Scheduler . 147
C.4 UNIX File I/O . 150
C.5 UNIX Socket I/O . 151

C.5.1 Client - UNIX/Datagram . 152
C.5.2 Server - UNIX/Datagram . 153
C.5.3 Client - INET/Stream . 154
C.5.4 Socket - INET/Stream . 156

Bibliography 159

Index 163

Preface

The goal of this work is to introduce concurrency into the object-oriented language C++ [Str97]. To achieve this goal a
set of important programming language abstractions were adapted to C++, producing a new dialect called � C++. These
abstractions were derived from a set of design requirements and combinations of elementary execution properties,
different combinations of which categorized existing programming language abstractions and suggested new ones.
The set of important abstractions contains those needed to express concurrency, as well as some that are not directly
related to concurrency. Therefore, while the focus of this work is on concurrency, all the abstractions produced from
the elementary properties are discussed. While the abstractions are presented as extensions to C++, the requirements
and elementary properties are generally applicable to other object-oriented languages.

This manual does not discuss how to use the new constructs to build complex concurrent systems. An indepth
discussion of these issues, with respect to � C++, is available in “Understanding Control Flow with Concurrent Pro-
gramming using � C++”. This manual is strictly a reference manual for � C++. A reader should have an intermediate
knowledge of control flow and concurrency issues to understand the ideas presented in this manual as well as some
experience programming in C++.

This manual contains annotations set off from the normal discussion in the following way:
�

Annotation discussion is quoted with quads.
�

An annotation provides rationale for design decisions or additional implementation information. Also a chapter or
section may end with a commentary section, which contains major discussion about design alternatives and/or imple-
mentation issues.

Each chapter of the manual does not begin with an insightful quotation. Feel free to add your own.

1

2 CONTENTS

Chapter 1

� C++ Extensions

� C++ [BD92] extends the C++ programming language [Str97] in somewhat the same way that C++ extends the C
programming language. The extensions introduce new objects that augment the existing set of control flow facilities
and provide for lightweight concurrency on uniprocessor and parallel execution on multiprocessor computers running
the UNIX operating system. The following discussion is the rationale for the particular extensions that were chosen.

1.1 Design Requirements

The following requirements directed this work:

� Any linguistic feature that affects code generation must become part of the language. In other words, if the com-
piler can generate code that invalidates the correctness of a library package implementing a particular feature,
either the library feature cannot be implemented safely or additional capabilities must be added to the program-
ming language to support the feature. Concurrency is a language feature affected by code generation, and hence,
must be added to the programming language [Buh95]. In the case of C++, the concurrency extensions are best
added through new kinds of objects.

� All communication among the new kinds of objects must be statically type checkable because static type check-
ing is essential for early detection of errors and efficient code generation. (As well, this requirement is consistent
with the fact that C++ is a statically typed programming language.)

� Interaction among the different kinds of objects should be possible, and in particular, interaction among con-
current objects, called tasks, should be possible. This requirement allows a programmer to choose the kind of
object best suited to the particular problem without having to cope with communication restrictions.

In contrast, some approaches have restrictions on interactions among concurrent objects, such as tasks can only
interact indirectly through another non-task object. For example, many programming languages that support
monitors [Bri75, MMS79, Hol92] require that all communication among tasks be done indirectly through a
monitor; similarly, the Linda system [CG89] requires that all communication take place through one or possibly
a small number of tuple spaces. This restriction increases the number of objects in the system; more objects
consume more system resources, which slows the system. As well, communication among tasks is slowed
because of additional synchronization and data transfers with the intermediate object.

� All communication among objects is performed using routine calls; data is transmitted by passing arguments
to parameters and results are returned as the value of the routine call. It is confusing to have multiple forms of
communication in a language, such as message passing, message queues, or communication ports, as well as
normal routine call.

� Any of the new kinds of objects should have the same declaration scopes and lifetimes as existing objects. That
is, any object can be declared at program startup, during routine and block activation, and on demand during
execution, using a new operator.

3

4 CHAPTER 1. � C++ EXTENSIONS

� All mutual exclusion must be implicit in the programming language constructs and all synchronization should be
limited in scope. Requiring users to build mutual exclusion out of locks often leads to incorrect programs. Also,
reducing the scope in which synchronization can be used, by encapsulating it as part of language constructs,
further reduces errors in concurrent programs.

� Both synchronous and asynchronous communication are needed in a concurrent system. However, the best
way to support this is to provide synchronous communication as the fundamental mechanism; asynchronous
mechanisms, such as buffering or futures [Hal85], can then be built using synchronous mechanisms. Building
synchronous communication out of asynchronous mechanisms requires a protocol for the caller to subsequently
detect completion, which is error prone because the caller may not obey the protocol (e.g., never retrieve a
result). Furthermore, asynchronous requests require the creation of implicit queues of outstanding requests, each
of which must contain a copy of the arguments of the request. This implementation requirement creates a storage
management problem because different requests require different amounts of storage in the queue. Therefore,
asynchronous communication is too complicated and expensive a mechanism to be hidden in a system.

� An object that is accessed concurrently must have some control over which requester it services next. There are
two distinct approaches: control can be based on the kind of request, for example, selecting a requester from
the set formed by calls to a particular entry point; or control can be based on the identity of the requester. In
the former case, it must be possible to give priorities to the sets of requesters. This requirement is essential for
high-priority requests, such as a time out or a termination request. (This priority is to be differentiated from
execution priority.) In the latter case, selection control is very precise as the next request must only come from
the specified requester. In general, the former case is usually sufficient and simpler to express.

� There must be flexibility in the order that requests are completed. That is, a task can accept a request and
subsequently postpone it for an unspecified time, while continuing to accept new requests. Without this ability,
certain kinds of concurrency problems are quite difficult to implement, e.g., disk scheduling, and the amount of
concurrency is inhibited as tasks are needlessly blocked [Gen81].

All of these requirements are satisfied in � C++ except the first, which requires compiler support. Even through � C++
lacks compiler support, its design assumes compiler support so the extensions are easily added to any C++ compiler.

1.2 Elementary Execution Properties
Extensions to the object concept were developed based on the following execution properties:

thread – is execution of code that occurs independently of and possibly concurrently with other execution; the exe-
cution resulting from a thread is sequential. A thread’s function is to advance execution by changing execution
state. Multiple threads provide concurrent execution. A programming language must provide constructs that
permit the creation of new threads and specify how threads are used to accomplish computation. Furthermore,
there must be programming language constructs whose execution causes threads to block and subsequently be
made ready for execution. A thread is either blocked or running or ready. A thread is blocked when it is waiting
for some event to occur. A thread is running when it is executing on an actual processor. A thread is ready
when it is eligible for execution but not being executed.

execution state – is the state information needed to permit independent execution. An execution state is either active
or inactive, depending on whether or not it is currently being used by a thread. In practice, an execution state
consists of the data items created by an object, including its local data, local block and routine activations, and
a current execution location, which is initialized to a starting point. The local block and routine activations
are often maintained in a contiguous stack, which constitutes the bulk of an execution state and is dynamic in
size, and is the area where the local variables and execution location are preserved when an execution state is
inactive. A programming language determines what constitutes an execution state, and therefore, execution state
is an elementary property of the semantics of a language. When control transfers from one execution state to
another, it is called a context switch.

mutual exclusion – is the mechanism that permits an action to be performed on a resource without interruption by
other actions on the resource. In a concurrent system, mutual exclusion is required to guarantee consistent gen-
eration of results, and cannot be trivially or efficiently implemented without appropriate programming language
constructs.

1.3. HIGH-LEVEL EXECUTION CONSTRUCTS 5

The first two properties represent the minimum needed to perform execution, and seem to be fundamental in that
they are not expressible in machine-independent or language-independent ways. For example, creating a new thread
requires creation of system runtime control information, and manipulation of execution states requires machine specific
operations (modifying stack and frame pointers). The last property, while expressible in terms of simple language
statements, can only be done by algorithms that are error-prone and inefficient, e.g., Dekker-like algorithms, and
therefore, mutual exclusion must also be provided as an elementary execution property, usually through special atomic
hardware instructions.

1.3 High-level Execution Constructs

A programming language designer could attempt to provide these 3 execution properties as basic abstractions in a
programming language [BLL88], allowing users to construct higher-level constructs from them. However, some com-
binations might be inappropriate or potentially dangerous. Therefore, all combinations are examined, analyzing which
ones make sense and are appropriate as higher-level programming language constructs. What is interesting is that
enumerating all combination of these elementary execution properties produces many existing high-level abstractions
and suggests new ones.

The three execution properties are properties of objects. Therefore, an object may or may not have a thread, may
or may not have an execution state, and may or may not have mutual exclusion. Different combinations of these three
properties produce different kinds of objects. If an object has mutual exclusion, this means that execution of certain
member routines are mutually exclusive of one another. Such a member routine is called a mutex member. In the
situation where an object does not have the minimum properties required for execution, i.e., thread and execution state,
those of its caller are used.

Table 1.1 shows the different abstractions possible when an object possesses different execution properties:

object properties object’s member routine properties
thread execution state no mutual exclusion mutual exclusion

no no 1 class object 2 monitor
no yes 3 coroutine 4 coroutine monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 (rejected) 8 task

Table 1.1: Fundamental Abstractions

Case 1 is an object, such as a free routine (a routine not a member of an object) or an object with member routines
neither of which has the necessary execution properties, called a class object. In this case, the caller’s thread and
execution state are used to perform execution. Since this kind of object provides no mutual exclusion, it is normally
accessed only by a single thread. If such an object is accessed by several threads, explicit locking may be required,
which violates a design requirement. Case 2 is like Case 1 but deals with the concurrent-access problem by implicitly
ensuring mutual exclusion for the duration of each computation by a member routine. This abstraction is a moni-
tor [Hoa74]. Case 3 is an object that has its own execution state but no thread. Such an object uses its caller’s thread
to advance its own execution state and usually, but not always, returns the thread back to the caller. This abstraction
is a coroutine [Mar80]. Case 4 is like Case 3 but deals with the concurrent-access problem by implicitly ensuring
mutual exclusion; the name coroutine monitor has been adopted for this case. Cases 5 and 6 are objects with a thread
but no execution state. Both cases are rejected because the thread cannot be used to provide additional concurrency.
First, the object’s thread cannot execute on its own since it does not have an execution state, so it cannot perform any
independent actions. Second, if the caller’s execution state is used, assuming the caller’s thread can be blocked to
ensure mutual exclusion of the execution state, the effect is to have two threads successively executing portions of a
single computation, which does not seem useful. Case 7 is an object that has its own thread and execution state. Be-
cause it has both a thread and execution state it is capable of executing on its own; however, it lacks mutual exclusion.
Without mutual exclusion, access to the object’s data is unsafe; therefore, servicing of requests would, in general,
require explicit locking, which violates a design requirement. Furthermore, there is no performance advantage over
case 8. For these reasons, this case is rejected. Case 8 is like Case 7 but deals with the concurrent-access problem by
implicitly ensuring mutual exclusion, called a task.

6 CHAPTER 1. � C++ EXTENSIONS

The abstractions suggested by this categorization come from fundamental properties of execution and not ad hoc
decisions of a programming language designer. While it is possible to simplify the programming language design by
only supporting the task abstraction [SBG

�

90], which provides all the elementary execution properties, this would
unnecessarily complicate and make inefficient solutions to certain problems. As will be shown, each of the non-
rejected abstractions produced by this categorization has a particular set of problems it can solve, and therefore, each
has a place in a programming language. If one of these abstractions is not present, a programmer may be forced to
contrive a solution for some problems that violates abstraction or is inefficient.

Chapter 2

� C++ Translator

The � C++ translator1 reads a program containing language extensions and transforms each extension into one or more
C++ statements, which are then compiled by an appropriate C++ compiler and linked with a concurrency runtime
library. Because � C++ is only a translator and not a compiler, some restrictions apply that would be unnecessary if
the extensions were part of the C++ programming language. Similar, but less extensive translators have been built:
MC [RH87] and Concurrent C++ [GR88].

2.1 Extending C++
Operations in � C++ are expressed explicitly, i.e., the abstractions derived from the elementary properties are used to
structure a program into a set of objects that interact, possibly concurrently, to complete a computation. This situation
is to be distinguished from implicit schemes, such as those that attempt to discover concurrency in an otherwise
sequential program, e.g., by parallelizing loops and access to data structures. While both schemes are complementary,
and hence, can appear together in a single programming language, implicit schemes are limited in their capacity
to discover concurrency, and therefore, the explicit scheme is essential. Currently, � C++ only supports the explicit
approach, but nothing in its design precludes the addition of the implicit approach.

The abstractions in Table 1.1, p. 5 are expressed in � C++ using two new type specifiers, _Coroutine and _Task,
which are extensions of the class construct, and hence, define new types. In this manual, a type defined by the class
construct and the new constructs are called class type, monitor type, coroutine type, coroutine-monitor type and
task type, respectively. The terms class object, monitor, coroutine, coroutine monitor and task refer to the objects
created from such types. The term object is the generic term for any instance created from any type. All objects
can be declared externally, in a block, or using the new operator. Two new type qualifiers, _Mutex and _Nomutex,
are also introduced to specify the presence or absence of mutual exclusion on the member routines of a type (see
Table 2.1). The default qualification values have been chosen based on the expected frequency of use of the new types.
Several new statements are added to the language; each is used to affect control in objects created by the new types.
Appendix A, p. 131 shows the grammar for all the � C++ extensions.

object properties object’s member routine properties
thread execution state no mutual exclusion mutual exclusion

no no [_Nomutex]
�

class _Mutex class
no yes [_Nomutex] _Coroutine _Mutex _Coroutine
yes yes N/A [_Mutex] _Task�

[] implies default qualification if not specified

Table 2.1: New Type Specifiers

� C++ executes on uniprocessor and multiprocessor shared-memory computers. On a uniprocessor, concurrency is
achieved by interleaving execution to give the appearance of parallel execution. On a multiprocessor computer, con-

1 The term “translator” is used rather than preprocessor because � C++ programs are partially parsed and symbol tables are constructed. A
preprocessor, such as cpp, normally only manipulates strings.

7

8 CHAPTER 2. � C++ TRANSLATOR

currency is accomplished by a combination of interleaved execution and true parallel execution. Furthermore, � C++
uses a shared-memory model. This single memory may be the address space of a single UNIX process or a memory
shared among a set of kernel threads. A memory is populated by routine activations, class objects, coroutines, moni-
tors, coroutine monitors and concurrently executing tasks, all of which have the same addressing scheme for accessing
the memory. Because these entities use the same memory they can be lightweight, so there is a low execution cost for
creating, maintaining and communicating among them. This approach has its advantages as well as its disadvantages.
Communicating objects do not have to send large data structures back and forth, but can simply pass pointers to data
structures. However, this technique does not lend itself to a distributed environment with separate address spaces.

�
Approaches taken by distributed shared-memory systems may provide the necessary implementation

mechanisms to make the distributed memory case similar to the shared-memory case.
�

2.2 Compile Time Structure of a � C++ Program
A � C++ program is constructed exactly like a normal C++ program with one exception: the main (starting) routine
is a member of an initial task called uMain, which has the following structure (Section 2.12, p. 29 details the task
construct):

_Task uMain {
private:

int argc; // number of arguments on the shell command line
char **argv; // pointers to tokens on the shell command line
int &uRetCode; // return value to the shell
void main(); // user provides body for this routine

public:
uMain(int argc, char *argv[]) : argc(argc), argv(argv) {}

};

A � C++ program must define the body for the main member routine of this initial task, e.g.:

. . . // normal C++ declarations and routines
void uMain::main() { // body for initial task uMain

. . .
switch(argc) { // use argc from uMain

case 2:
no = atoi(argv[1]); // use argv from uMain

. . .
uRetCode = 0; // use uRetCode from uMain

}
� C++ supplies the free routine main to initialize the � C++ runtime environment and creates the task uMain, of which
routine uMain::main is a member. Member uMain::main has available, as local variables, the same two arguments that
are passed to the free routine main: argc, and argv. To return a value back to the shell, set the variable uRetCode and
return from uMain::main; uRetCode is initialized to zero.

2.3 � C++ Runtime Structure
The dynamic structure of an executing � C++ program is significantly more complex than a normal C++ program. In
addition to the five kinds of objects introduced by the elementary properties, � C++ has two more runtime entities that
are used to control concurrent execution.

2.3.1 Cluster

A cluster is a collection of tasks and virtual processors (discussed next) that execute the tasks. The purpose of a cluster
is to control the amount of parallelism that is possible among tasks, where parallelism is defined as execution which
occurs simultaneously. Parallelism can only occur when multiple processors are present. Concurrency is execution
that, over a period of time, appears to be parallel. For example, a program written with multiple tasks has the potential
to take advantage of parallelism but it can execute on a uniprocessor, where it may appear to execute in parallel
because of the rapid speed of context switching.

2.3. � C++ RUNTIME STRUCTURE 9

Normally, a cluster uses a single-queue multi-server queueing model for scheduling its tasks on its processors (see
Chapter 8, p. 113 for other kinds of schedulers). This simple scheduling results in automatic load balancing of tasks
on processors. Figure 2.1 illustrates the runtime structure of a � C++ program. An executing task is illustrated by its
containment in a processor. Because of appropriate defaults for clusters, it is possible to begin writing � C++ programs
after learning about coroutines or tasks. More complex concurrency work may require the use of clusters. If several
clusters exist, both tasks and virtual processors, can be explicitly migrated from one cluster to another. No automatic
load balancing among clusters is performed by � C++.

Other Cluster(s)

Ready Tasks

Blocked Tasks

Processors

User ClusterSystem Cluster

clustercoroutine task monitor processor

Figure 2.1: Runtime Structure of a � C++ Program

When a � C++ program begins execution, it creates two clusters: a system cluster and a user cluster. The system
cluster contains a processor that does not execute user tasks. Instead, the system cluster handles system-related opera-
tions, such as catching errors that occur on the user clusters, printing appropriate error information, and shutting down
� C++. A user cluster is created to contain the user tasks; the first task created in the user cluster is uMain, which begins
executing the member routine uMain::main. Having all tasks execute on the one cluster often maximizes utilization of
processors, which minimizes runtime. However, because of limitations of the underlying operating system or because
of special hardware requirements, it is sometimes necessary to have more than one cluster. Partitioning into clusters
must be used with care as it has the potential to inhibit parallelism when used indiscriminately. However, in some situ-
ations partitioning is essential, e.g., on some systems concurrent UNIX I/O operations are only possible by exploiting
the clustering mechanism.

2.3.2 Virtual Processor

A � C++ virtual processor is a “software processor” that executes threads. A virtual processor is implemented by ker-
nel thread (normally created through a UNIX process) that is subsequently scheduled for execution on a hardware
processor by the underlying operating system. On a multiprocessor, kernel threads are usually distributed across the
hardware processors and so some virtual processors are able to execute in parallel. � C++ uses virtual processors in-
stead of hardware processors so that programs do not actually allocate and hold hardware processors. Programs can
be written to run using a number of virtual processors and execute on a machine with a smaller number of hardware
processors. Thus, the way in which � C++ accesses the parallelism of the underlying hardware is through an interme-
diate resource, the kernel thread. In this way, � C++ is kept portable across uniprocessor and different multiprocessor
hardware designs.

When a virtual processor is executing, � C++ controls scheduling of tasks on it. Thus, when UNIX schedules a
virtual processor for a runtime period, � C++ may further subdivide that period by executing one or more tasks. When

10 CHAPTER 2. � C++ TRANSLATOR

multiple virtual processors are used to execute tasks, the � C++ scheduling may automatically distribute tasks among
virtual processors, and thus, indirectly among hardware processors. In this way, parallel execution occurs.

2.4 � C++ Kernel

After a � C++ program is translated and compiled, a runtime concurrency library is linked in with the resulting pro-
gram, called the � C++ kernel. There are two versions of the � C++ kernel: the unikernel, which is designed to use a
single processor (in effect, there is only one virtual processor); and the multikernel, which is designed to use several
processors. Thus, the unikernel is sensibly used on systems with a single hardware processor or when kernel threads
are unavailable; the multikernel is sensibly used on systems that have multiple hardware processors and when kernel
threads are available. Table 2.2 shows the situations where each kernel can be used. The unikernel can be used in a
system with multiple hardware processors and kernel threads but does not take advantage of either of these capabili-
ties. The multikernel can be used on a system with a single hardware processor and kernel threads but performs less
efficiently than the unikernel because it uses multiprocessor techniques unnecessarily.

no kernel threads kernel threads

single unikernel, yes unikernel, yes
processor multikernel, no multikernel, yes, but inefficient
multiple unikernel, yes unikernel, yes, but no parallelism

processors multikernel, no multikernel, yes

Table 2.2: When to Use the Unikernel and Multikernel

Each of the � C++ kernels has a debugging version, which performs a number of runtime checks. For example,
the � C++ kernel provides no support for automatic growth of stack space for coroutines and tasks because this would
require compiler support. The debugging version checks for stack overflow whenever context switches occur among
coroutines and tasks, which catches many stack overflows; however, stack overflow can still occur if insufficient
stack area is provided, which can cause an immediate error or unexplainable results. Many other runtime checks are
performed in the debugging version. After a program is debugged, the non-debugging version can be used to increase
performance.

2.5 Using the � C++ Translator

To use the concurrency extensions in a C++ program, include the file:

#include <uC++.h>

at the beginning of each source file. It must appear before all other include files in each translation unit.

2.5.1 Compiling a � C++ Program

The u++ command is used to compile a � C++ program. This command works just like the GNU g++ [Tie90] command
for compiling C++ programs, e.g.:

u++ [C++ options] yourprogram.C [assembler and loader files]

The following additional options are available for the u++ command:

debug The program is linked with the debugging version of the unikernel or multikernel. The debug version
performs runtime checks to help during the debugging phase of a � C++ program, but substantially slows the
execution of the program. The runtime checks should only be removed after the program is completely de-
bugged. This option is the default.

nodebug The program is linked with the non-debugging version of the unikernel or multikernel, so the execution
of the program is faster. However, no runtime checks or asserts are performed so errors usually result in
abnormal program termination.

2.5. USING THE � C++ TRANSLATOR 11

yield When a program is translated, a random number of context switches occur at the beginning of each member
routine so that during execution on a uniprocessor there is a better simulation of parallelism. (This non-
determinism in execution is in addition to random context switching due to pre-emptive scheduling, see Sec-
tion 7.4.1, p. 109). The extra yields of execution can help during the debugging phase of a � C++ program, but
substantially slows the execution of the program.

noyield Additional context switches are not inserted in member routines. This option is the default.

verify When a program is translated, a check to verify that the stack has not overflowed occurs at the beginning of
each member routine. (This checking is in addition to checks on each context switch provided by the debug
option.) Verifying the stack has not overflowed is important during the debugging phase of a � C++ program,
but slows the execution of the program.

noverify Stack-overflow checking is not inserted in member routines. This option is the default.

multi The program is linked with the multikernel.

nomulti The program is linked with the unikernel. This option is the default.

quiet The � C++ compilation message is not printed at the beginning of a compilation.

noquiet The � C++ compilation message is printed at the beginning of a compilation. This option is the default.

U++ Only the C preprocessor and the � C++ translator steps are performed and the transformed program is written
to standard output, which makes it possible to examine the code generated by the � C++ translator.

compiler path-name The path-name of the compiler used to compile a � C++ program(s). The default is the
compiler used to compile the � C++ runtime library. It is unsafe to use a different compiler unless the generated
code is binary compatible. (See Section 9.3, p. 128 for supported compilers.)

When multiple conflicting options appear on the command line, e.g., yield followed by noyield, the last option takes
precedence.

2.5.2 Preprocessor Variables

When programs are compiled using u++, the following preprocessor variables are available:

_ _U_CPLUSPLUS_ _ is always available during preprocessing and its value is the current major version number
of � C++.2

_ _U_CPLUSPLUS_MINOR_ _ is always available during preprocessing and its value is the current minor version
number of � C++.

_ _U_CPLUSPLUS_PATCH__ is always available during preprocessing and its value is the current patch version
number of � C++.

_ _U_DEBUG_ _ is available during preprocessing if the debug compilation option is specified.

_ _U_YIELD_ _ is available during preprocessing if the yield compilation option is specified.

_ _U_VERIFY_ _ is available during preprocessing if the verify compilation option is specified.

_ _U_MULTI_ _ is available during preprocessing if the multi compilation option is specified.

2 The C preprocessor allows only integer values in a preprocessor variable so a value like “5.4.1” is not allowed. Hence, the need to have three
variables for the major, minor and patch version number.

12 CHAPTER 2. � C++ TRANSLATOR

These preprocessor variables allow conditional compilation of programs that must work differently in these situa-
tions. For example, to allow a normal C/C++ program to be compiled using � C++, the following is necessary:

#ifdef _ _U_CPLUSPLUS_ _
void uMain::main() {
#else
int main(int argc, char *argv[]) {
#endif

// body of main routine
}

which conditionally includes the correct definition for main if the program is compiled using u++.

2.6 Labelled Break/Continue

While C++ provides break and continue statements for altering control flow, both are restricted to one level of nesting
for a particular control structure. Unfortunately, this restriction forces programmers to use goto to achieve the equiv-
alent for more than one level of nesting. To prevent having to make this switch, � C++ extends the break and continue
with a target label to support static multi-level exit [Buh85, GJSB00]. For the labelled break, it is possible to specify
which control structure is the target for exit, e.g.:

C++ � C++

for (. . .) {
for (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . . // or break

} L3: ;
} L2: ;

} L1: ;

L1: for (. . .) {
L2: for (. . .) {

L3: for (. . .) {
. . . break L1; . . .
. . . break L2; . . .
. . . break L3; . . . // or break

}
}

}

The innermost loop has three exit points, which cause termination of one or more of the three nested loops, respectively.
For the labelled continue, it is possible to specify which control structure is the target for the next loop iteration, e.g.:

C++ � C++

for (. . .) {
for (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . . // or continue

L3: ; }
L2: ; }

L1: ; }

L1: for (. . .) {
L2: for (. . .) {

L3: for (. . .) {
. . . continue L1; . . .
. . . continue L2; . . .
. . . continue L3; . . . // or continue

}
}

}

The innermost loop has three restart points, which cause the next loop iteration to begin, respectively. For both break
and continue, the target label must be directly associated with a for, while or do statement; for break, the target label
can also be associated with a switch or compound ({ }) statement, e.g.:

2.7. COROUTINE 13

L1: {
. . . declarations . . .
L2: switch (. . .) {

L3: for (. . .) {
. . . break L1; . . . // exit compound statement
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

Both break and continue with target labels are simply a goto restricted in the following ways:

� They cannot be used to create a loop. This means that only the looping construct can be used to create a loop.
This restriction is important since all situations that can result in repeated execution of statements in a program
are clearly delineated.

� Since they always transfer out of containing control structures, they cannot be used to branch into a control
structure.

The advantage of the labelled break/continue is that it allows static multi-level exits without having to use the goto
statement and ties control flow to the target control structure rather than an arbitrary point in a program. Furthermore,
the location of the label at the beginning of the target control structure informs the reader that complex control flow is
occurring in the body of the control structure. With goto, the label at the end of the control structure fails to convey this
important clue early enough to the reader. Finally, using an explicit target for the transfer instead of an implicit target
allows new nested loop or switch constructs to be added or removed without affecting other constructs. The implicit
targets of the current break and continue, i.e., the closest enclosing loop or switch, change as certain constructs are
added or removed.

2.7 Coroutine
A coroutine is an object with its own execution state, so its execution can be suspended and resumed. Execution of a
coroutine is suspended as control leaves it, only to carry on from that point when control returns at some later time.
This property means a coroutine is not restarted at the beginning on each activation and its local variables are preserved.
Hence, a coroutine solves the class of problems associated with finite-state machines and push-down automata, which
are logically characterized by the ability to retain state between invocations. In contrast, a free routine or member
routine always executes to completion before returning so its local variables only persist for a particular invocation.

A coroutine executes serially, and hence there is no concurrency implied by the coroutine construct.
However, the ability of a coroutine to suspend its execution state and later have it resumed is the precursor
to true tasks but without concurrency problems; hence, a coroutine is also useful to have in a programming
language for teaching purposes because it allows incremental development of these properties [Yea91].

A coroutine type has all the properties of a class. The general form of the coroutine type is the following:

[_Nomutex] _Coroutine coroutine-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The coroutine type has one distinguished member, named main; this distinguished member is called the coroutine
main. Instead of allowing direct interaction with main, its visibility is normally private or protected; therefore,

14 CHAPTER 2. � C++ TRANSLATOR

a coroutine can only be activated indirectly by one of the coroutine’s member routines. The decision to make the
coroutine main private or protected depends solely on whether derived classes can reuse the coroutine main or must
supply their own. Hence, a user interacts with a coroutine indirectly through its member routines. This approach
allows a coroutine type to have multiple public member routines to service different kinds of requests that are statically
type checked. A coroutine main cannot have parameters or return a result, but the same effect can be accomplished
indirectly by passing values through the coroutine’s global variables, called communication variables, which are
accessible from both the coroutine’s member and main routines.

A coroutine can suspend its execution at any point by activating another coroutine, which is done in two ways.
First, a coroutine can implicitly reactivate the coroutine that previously activated it via member suspend. Second, a
coroutine can explicitly invoke a member of another coroutine, which causes activation of that coroutine via member
resume. These two forms result in two different styles of coroutine control flow. A full coroutine is part of a resume
cycle, while a semi-coroutine [Mar80, p. 4, 37] is not part of a resume cycle. A full coroutine can perform semi-
coroutine operations because it subsumes the notion of the semi-coroutine; i.e., a full coroutine can use suspend to
activate the member routine that activated it or resume to itself, but it must always form a resume cycle with other
coroutines.

�
Simulating a coroutine with a subroutine requires retaining data in variables with global scope or

variables with static storage-class between invocations. However, retaining state in these ways violates
the principle of abstraction and does not generalize to multiple instances, since there is only one copy of
the storage in both cases. Also, without a separate execution state, activation points must be managed
explicitly, requiring the execution logic to be written as a series of cases, each ending by recording the
next case to be executed on re-entry. However, explicit management of activation points is complex and
error-prone, for more than a small number of activation points.

Simulating a coroutine with a class solves the problem of abstraction and does generalize to multiple
instances, but does not handle the explicit management of activation points. Simulating a coroutine with a
task, which also has an execution state to handle activation points, is non-trivial because the organizational
structure of a coroutine and task are different. Furthermore, simulating full coroutines, which form a
cyclic call-graph, may be impossible with tasks because of a task’s mutual-exclusion, which could cause
deadlock (not a problem in � C++ because multiple entry is allowed by the same thread). Finally, a task
is inefficient for this purpose because of the higher cost of switching both a thread and execution state as
opposed to just an execution state. In this implementation, the cost of communication with a coroutine is,
in general, less than half the cost of communication with a task, unless the communication is dominated
by transferring large amounts of data.

�

2.7.1 Coroutine Creation and Destruction

A coroutine is the same as a class object with respect to creation and destruction, e.g.:

_Coroutine C {
void main() . . . // coroutine main

public:
void r(. . .) . . .

};
C *cp; // pointer to a C coroutine
{ // start a new block

C c, ca[3]; // local creation
cp = new C; // dynamic creation
. . .
c.r(. . .); // call a member routine that activates the coroutine
ca[1].r(. . .); // call a member routine that activates the coroutine
cp >r(. . .); // call a member routine that activates the coroutine
. . .

} // c, ca[0], ca[1] and ca[2] are deallocated
. . .
delete cp; // cp

�

s instance is deallocated

When a coroutine is created, the appropriate coroutine constructor and any base-class constructors are executed in
the normal order. The coroutine’s execution-state is created and the starting point (activation point) is initialized

2.7. COROUTINE 15

to the coroutine’s main routine visible by the inheritance scope rules from the coroutine type; however, the main
routine does not start execution until the coroutine is activated by one of its member routines. The location of a
coroutine’s variables—in the coroutine’s data area or in member routine main—depends on whether the variables
must be accessed by member routines other than main. Once main is activated, it executes until it activates another
coroutine or terminates. The coroutine’s point of last activation may be outside of the main routine because main may
have called another routine; the routine called could be local to the coroutine or in another coroutine.

A coroutine terminates when its main routine terminates. When a coroutine terminates, it activates the coroutine
or task that caused main to start execution. This choice ensures that the starting sequence is a tree, i.e., there are no
cycles. A thread can move in a cycle among a group of coroutines but termination always proceeds back along the
branches of the starting tree. This choice for termination does impose certain requirements on the starting order of
coroutines, but it is essential to ensure that cycles can be broken at termination. Activating a terminated coroutine
is an error. A coroutine’s destructor is invoked by the deallocating thread when the block containing the coroutine
declaration terminates or by an explicit delete statement for a dynamically allocated coroutine.

Like a class object, a coroutine may be deleted at any time even if the coroutine’s main routine is started but
not terminated, i.e., the coroutine is still suspended in its main routine. After the coroutine’s destructor is run, the
coroutine’s stack is unwound via the cancellation mechanism (see Section 5, p. 77), to ensure cleanup of resources
allocated on the coroutine’s stack. This unwinding involves an implicit resume of the coroutine being deleted.

Like a routine or class, a coroutine can access all the external variables of a C++ program and the heap area. Also,
any static member variables declared within a coroutine are shared among all instances of that coroutine type. If a
coroutine makes global references or has static variables and is instantiated by different tasks, there is the general
problem of concurrent access to these shared variables. Therefore, it is suggested that these kinds of references be
used with extreme caution.

2.7.2 Inherited Members

Each coroutine type, if not derived from some other coroutine type, is implicitly derived from the coroutine type
uBaseCoroutine, e.g.:

_Coroutine coroutine-name : public uBaseCoroutine { // implicit inheritance
. . .

};

where the interface for the base-class uBaseCoroutine is:

_Coroutine uBaseCoroutine {
protected:

void resume();
void suspend();

public:
uBaseCoroutine();
uBaseCoroutine(unsigned int stacksize);

void *stackPointer() const; // stack info
unsigned int stackSize() const;
ptrdiff_ t stackFree() const;
ptrdiff_ t stackUsed() const;
void verify();

const char *setName(const char *name); // coroutine info
const char *getName() const;
enum State { Halt, Active, Inactive };
State getState() const;
uBaseCoroutine &starter() const;
uBaseCoroutine &resumer() const;

16 CHAPTER 2. � C++ TRANSLATOR

enum CancellationState { CancelEnabled, CancelDisabled };
void cancel(); // cancellation
bool cancelled();
bool cancelInProgress();

_DualEvent Failure; // exceptions
_DualEvent UnHandledException;

};

The member routines resume and suspend are discussed in Section 2.7.3.
The overloaded constructor routine uBaseCoroutine has the following forms:

uBaseCoroutine() – creates a coroutine on the current cluster with the cluster’s default stack size.

uBaseCoroutine(unsigned int stacksize) – creates a coroutine on the current cluster with the specified stack size
(in bytes).

A coroutine type can be designed to allow declarations to specify the stack size by doing the following:

_Coroutine C {
public:

C() : uBaseCoroutine(8192) {}; // default 8K stack
C(int s) : uBaseCoroutine(s) {}; // user specified stack size
. . .

};
C x, y(16384); // x has an 8K stack, y has a 16K stack

The member routine stackPointer returns the address of the stack pointer. If a coroutine calls this routine, its
current stack pointer is returned. If a coroutine calls this routine for another coroutine, the stack pointer saved at the
last context switch of the other coroutine is returned; this may not be the current stack pointer value for that coroutine.

The member routine stackSize returns the maximum amount of stack space that is allocated for this coroutine. A
coroutine cannot exceed this value during its execution.

The member routine stackFree returns the amount of free stack space. If a coroutine calls this routine, its current
free stack space is returned. If a coroutine calls this routine for another coroutine, the free stack space at the last
context switch of the other coroutine is returned; this may not be the current free stack space for that coroutine.

The member routine stackUsed returns the amount of used stack space. If a coroutine calls this routine, its current
used stack space is returned. if a coroutine calls this routine for another coroutine, the used stack space at the last
context switch of the other coroutine is returned; this may not be the current used stack space for that coroutine.

The member routine verify checks whether the current coroutine has overflowed its stack. If it has, the program
terminates. To completely ensure the stack size is never exceeded, a call to verify must be included after each set of
declarations, as in the following:

void main() {
. . . // declarations
verify(); // check for stack overflow
. . . // code

}

Thus, after a coroutine has allocated its local variables, a check is made that its stack has not overflowed. Clearly, this
technique is not ideal and requires additional work for the programmer, but it does handle complex cases where the
stack depth is difficult to determine and can be used to help debug possible stack overflow situations.

�
When the verify option is used, calls to verify are automatically inserted at the beginning of each

member routine, but not after each set of declarations.
�

The member routine setName associates a name with a coroutine and returns the previous name. The name is not
copied so its storage must persist for the duration of the coroutine. The member routine getName returns the string
name associated with a coroutine. If a coroutine has not been assigned a name, getName returns the type name of the
coroutine. � C++ uses the name when printing any error message, which is helpful in debugging.

The member routine getState returns the current state of a coroutine’s execution, which is one of the enumerated
values Halt, Active or Inactive.

2.8. MUTEX TYPE 17

The member routine starter returns the coroutine’s starter, i.e., the coroutine that performed the first resume of
this coroutine (see Section 2.7.1, p. 14). The member routine resumer returns the coroutine’s last resumer, i.e., the
coroutine that performed the last resume of this coroutine (see Section 2.7.3).

The member routine cancel marks the coroutine/task for cancellation. The member routine cancelled returns true
if the coroutine/task is marked for cancellation, and false otherwise. The member routine cancelInProgress returns
true if cancellation is started for the coroutine/task. Section 5, p. 77 discusses cancellation in detail.

The type _DualEvent is defined in Section 4.3, p. 58.
The free routine:

uBaseCoroutine &uThisCoroutine();

is used to determine the identity of the coroutine executing this routine. Because it returns a reference to the base
coroutine type, uBaseCoroutine, this reference can only be used to access the public routines of type uBaseCoroutine.
For example, a free routine can check whether the allocation of its local variables has overflowed the stack of a
coroutine that called it by performing the following:

int FreeRtn(. . .) {
. . . // declarations
uThisCoroutine().verify(); // check for stack overflow
. . . // code

}

As well, printing a coroutine’s address for debugging purposes must be done like this:

cout << "coroutine:" << &uThisCoroutine() << endl; // notice the ampersand (&)

2.7.3 Coroutine Control and Communication

Control flow among coroutines is specified by the protected members resume and suspend. A call to resume may
appear in any member of the coroutine, but normally it is used only in the public members. A call to suspend may
appear in any member of the coroutine, but normally it is used only in the coroutine main or non-public members called
directly or indirectly from the coroutine main. Members resume and suspend are composed of two parts. The first
part inactivates the coroutine that calls the member and the second part reactivates another coroutine; the difference is
which coroutine is reactivated. Member resume activates the current coroutine object, i.e., the coroutine specified by
the implicit this variable. Member suspend activates the coroutine that previously executed a call to resume for the
coroutine executing the suspend, ignoring any resumes of a coroutine to itself. In effect, these special members cause
control flow to transfer among execution states, which involves context switches.

It is important to understand that calling a coroutine’s member by another coroutine does not cause a switch to the
other coroutine. A switch only occurs when a resume is executed in the other coroutine’s member. Therefore, printing
&uThisCoroutine() in the other coroutine’s member always prints the calling coroutine’s address; printing this in the
other coroutine’s member always prints the called coroutine’s address (which is the coroutine that resume switches
to). Hence, there is a difference between who is executing and where execution is occurring.

Figure 2.2 shows a semi-coroutine producer and consumer coroutine, and a driver routine. Notice the explicit call
from Prod’s main routine to delivery and then the return back when delivery completes. delivery always activates its
coroutine, which subsequently activates delivery.

Figure 2.3, p. 19 shows a full-coroutine producer and consumer coroutine, and a driver routine. Notice the calls
to member resume in routines payment and delivery. The resume in routine payment activates the execution state
associated with Prod::main and that execution state continues in routine Cons::delivery. Similarly, the resume in routine
delivery activates the execution state associated with Cons::main and that execution state continues in Cons::main
initially and subsequently in routine Prod::payment. This cyclic control flow and the termination control flow is
illustrated in Figure 2.4, p. 20.

2.8 Mutex Type
A mutex type consists of a set of variables and a set of mutex members that operate on the variables. A mutex type
has at least one mutex member. Objects instantiated from mutex types have the property that mutex members are
executed with mutual exclusion; that is, only one task at a time can be executing in the mutex members. Similar to an
execution state, a mutex object is either active or inactive, depending on whether or not a task is executing a mutex
member (versus a task executing the coroutine main). Mutual exclusion is enforced by locking the mutex object when
execution of a mutex member begins and unlocking it when the active task voluntarily gives up control of the mutex

18 CHAPTER 2. � C++ TRANSLATOR

Consumer Producer

_Coroutine Cons {
int p1, p2, status; // communication
bool done;
void main() {

// 1st resume starts here
int money = 1;
for (;;) {

cout << "cons receives: " <<
p1 << ", " << p2;

if (done) break;
status += 1;
cout << " and pays $" <<

money << endl;
suspend(); // restart delivery & stop
money += 1;

}
cout << "cons stops" << endl;

}
public:

Cons() : status(0), done(false) {}
int delivery(int p1, int p2) {

Cons::p1 = p1;
Cons::p2 = p2;
resume(); // restart main
return status;

}
void stop() {

done = true;
resume(); // restart main

}
}; // Cons

_Coroutine Prod {
Cons &cons; // communication
int N;
void main() {

// 1st resume starts here
int i, p1, p2, status;
for (i = 1; i <= N; i += 1) {

p1 = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<

p1 << ", " << p2 << endl;
status = cons.delivery(p1, p2);
cout << "prod status: " <<

status << endl;
}
cout << "prod stops" << endl;
cons.stop();

}
public:

Prod(Cons &c) : cons(c) {}
void start(int N) {

Prod::N = N;
resume(); // restart main

}
}; // Prod

void uMain::main() {
Cons cons; // create consumer
Prod prod(cons); // create producer
prod.start(5); // start producer

}

Figure 2.2: Semi-Coroutine Producer-Consumer

object by waiting in or exiting from the monitor. If another task invokes a mutex member while a mutex object is
locked, the task is blocked until the mutex object becomes unlocked. An active task may call other mutex members
either directly from within the mutex type or indirectly by calling another object, which subsequently calls back into
the mutex object. If an active task enters multiple mutex objects, it owns the mutex locks for these objects and can
enter anyone of them again without having to reacquire their locks. If an active task releases control of one of these
mutex objects by waiting within it, which implicitly unlocks that object, the task does not unlock any other mutex
objects it currently owns. If an active task releases control of one of these mutex objects by exiting from it, which
implicitly unlocks that object, the task must do so in strict nested order, i.e., last-in first-out (LIFO) order of mutex-
object acquisition (see Section 6.2.3.3, p. 93). This LIFO restriction results solely because there does not seem to be
any useful examples for non-LIFO locking, and it is often an indication of an error in a program.

When _Mutex or _Nomutex qualifies a type, e.g.:

_Mutex class M {
private:

char z(. . .); // default nomutex
public:

M(); // default nomutex
~M(); // default mutex
int x(. . .); // default mutex
float y(. . .); // default mutex

};

it defines the default form of mutual exclusion on all public member routines, except the constructor, which is never

2.8. MUTEX TYPE 19

Consumer Producer

_Coroutine Cons {
Prod ∏ // communication
int p1, p2, status;
bool done;
void main() {

// 1st resume starts here
int money = 1, receipt;
for (;;) {

cout << "cons receives: " <<
p1 << ", " << p2;

if (done) break;
status += 1;
cout << " and pays $" <<

money << endl;
receipt = prod.payment(money);
cout << "cons receipt #" <<

receipt << endl;
money += 1;

}
cout << "cons stops" << endl;

}
public:

Cons(Prod &p) : prod(p) {
done = false;
status = 0;

}
int delivery(int p1, int p2) {

Cons::p1 = p1; // restart cons in
Cons::p2 = p2; // Cons::main 1st time
resume(); // and afterwards cons
return status; // in Prod::payment

}
void stop() {

done = true;
resume();

}
}; // Cons

_Coroutine Prod {
Cons *cons; // communication
int N, money, receipt;
void main() {

// 1st resume starts here
int i, p1, p2, status;
for (i = 1; i <= N; i += 1) {

p1 = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<

p1 << ", " << p2 << endl;
status = cons >delivery(p1, p2);
cout << "prod status: " <<

status << endl;
}
cout << "prod stops" << endl;
cons >stop();

}
public:

Prod() : receipt(0) {}
int payment(int money) {

Prod::money = money;
cout << "prod payment of $" <<

money << endl;
resume(); // restart prod
receipt += 1; // in Cons::delivery
return receipt;

}
void start(int N, Cons &c) {

Prod::N = N;
cons = &c;
resume();

}
}; // Prod

void uMain::main() {
Prod prod;
Cons cons(prod);
prod.start(5, cons);

}

Figure 2.3: Full-Coroutine Producer-Consumer

mutex, and the destructor, which is always mutex for a mutex type. Hence, public member routines x and y of
mutex type M are mutex members executing mutually exclusively of one another. Member routines that are protected
and private are always implicitly _Nomutex, except for the destructor of a mutex type, which is always _Mutex
regardless of its visibility. Because the destructor of a mutex type is always executed with mutual exclusion, the call to
the destructor may block, either at termination of a block containing a mutex object or when deleting a dynamically
allocated mutex object. If a mutex qualifier is specified on a forward declaration, e.g.:

_Mutex class M; // forward declaration
. . .
_Mutex class M {. . .} // actual declaration

it must match with the actual declaration. In general, it is best not to put a mutex qualifier on a forward declaration so
the default can be changed on the actual declaration without having to change the forward declaration.

A mutex qualifier may be needed for protected and private member routines in mutex types, e.g.:

20 CHAPTER 2. � C++ TRANSLATOR

(context switch)

(context switch)

termination
sequence

normal
execution

uMain::main

prod

cons

Start/Terminate Sequence Thread Movement

uMain::main

Prod::start

(context switch)

Prod::main

Cons::delivery

Cons::main

Prod::payment

Cons::delivery

Prod::main

Cons::delivery

Prod::payment

Cons::main

(context switch)

Figure 2.4: Cyclic Control Flow in Full Coroutine

_Mutex class M {
private:

_Mutex char z(. . .); // explicitly qualified member routine
. . .

};

because another task may need access to these member routines. For example, when a friend task calls a protected or
private member routine, these calls may need to provide mutual exclusion.

A public member of a mutex type can be explicitly qualified with _Nomutex. Such a routine is, in general, error-
prone in concurrent situations because the lack of mutual exclusion permits concurrent updating to object variables.
However, there are two situations where a nomutex public member are useful: first, for read-only member routines
where execution speed is of critical importance; and second, to encapsulate a sequence of calls to several mutex
members to establish a protocol, which ensures that a user cannot violate the protocol since it is part of the type’s
definition.

The general structure of a mutex object is shown in Figure 2.5. All the implicit and explicit data structures
associated with a mutex object are discussed in the following sections. Notice each mutex member has a queue
associated with it on which calling tasks wait if the mutex object is locked. A nomutex member has no queue.

2.9 Scheduling
For many purposes, the mutual exclusion that is provided automatically by mutex members is all that is needed, e.g.,
an atomic counter:

_Mutex class atomicounter {
int cnt;

public:
atomicounter() { cnt = 0; }
inc() { cnt += 1; } // atomically increment counter

}

2.9. SCHEDULING 21

exit

A

condition
B

stack

acceptor/
signalled

condition

X

mutex

Y

entry

order of

active task blocked task duplicate

queue

arrival

shared

variables

queues

a

c

d

b

b

a

d

c

Figure 2.5: � C++ Mutex Object

However, it is sometimes necessary to synchronize with tasks calling or executing within the mutex object forming
different scheduling patterns. For this purpose, a task in a mutex object can block until a particular external or internal
event occurs. At some point after a task has blocked, it must be reactivated either implicitly by the implicit scheduler
(discussed next) or explicitly by another (active) task.

2.9.1 Implicit Scheduling

Implicit scheduling occurs when a mutex object becomes unlocked because the active task blocks in or exits from a
mutex member. The next task to use the mutex object is then chosen from one of a number of lists associated with the
mutex object. Figure 2.5 shows a mutex object with a set of tasks using or waiting to use it. When a calling task finds
the mutex object locked, it is added to both the mutex queue of the member routine it called and the entry queue;
otherwise it enters the mutex object and locks it. The entry queue is a list of all the calling tasks in chronological
order of arrival, which is important for selecting a task when there is no active task in a mutex object. When a task in
the mutex object is blocked implicitly (see Section 2.9.2) or is reactivated by another (active) task (see Section 2.9.3,
p. 25), it is added to the top of the acceptor/signalled stack.

When a mutex object becomes unlocked, the next task to execute is selected by an implicit scheduler. For some
of the following scheduling statements, the implicit scheduler is directed to select from a specific set of queues;
hence, there is no choice with regard to which queues are examined. For other scheduling statements, the implicit
scheduler may make a choice among the queues. When a choice is possible, the implicit scheduler for � C++ makes
selections based on the results presented in [BFC95] to give the user the greatest possible control and produce efficient
performance. These selection rules are:

1. Select tasks that have entered the mutex object, blocked, and now need to continue execution over tasks that
have called and are waiting to enter.

2. When one task reactivates a task that was previously blocked in the mutex object, the restarting task always con-
tinues execution and the reactivated task continues to wait until it is selected for execution by rule 1. (signalBlock
is an exception to this rule, see page 26.)

22 CHAPTER 2. � C++ TRANSLATOR

All other tasks must wait until the mutex object is again unlocked. Therefore, when selection is done implicitly, the
next task to resume is not under direct user control, but is selected by the implicit scheduler.

2.9.2 External Scheduling

External scheduling controls state changes to a mutex object by scheduling calls to specified mutex members, which
indirectly schedules tasks calling from outside the mutex object. This technique takes advantage of the entry queue to
block tasks unconditionally when the mutex object is active (i.e., block outside) and the acceptor stack to block tasks
conditionally that have entered the monitor (i.e., block inside). Much of the scheduling that occurs and the programmer
thinks about is the outside scheduling from the entry queue rather than the internal scheduling on the acceptor stack,
which occurs implicitly. External scheduling is accomplished with the accept statement.

2.9.2.1 Accept Statement

A _Accept statement dynamically chooses the mutex member(s) that executes next, which indirectly controls the next
accepted caller, i.e., the next caller to the accepted mutex member(s). The simple form of the _Accept statement is:

_When (conditional-expression) // optional guard
_Accept(mutex-member-name-list);

with the restriction that constructors, new, delete, and _Nomutex members are excluded from being accepted.
The first three member routines are excluded because these routines are essentially part of the implicit memory-
management runtime support. That is, the object does not exist until after the new routine is completed and a con-
structor starts; similarly, the object does not exist when delete is called. In all these cases, member routines cannot be
called, and hence accepted, because the object does not exist or is not initialized. _Nomutex members are excluded
because they contain no code affecting the caller or acceptor with respect to mutual exclusion.

The syntax for accepting a mutex operator member, such as operator =, is:

_Accept(operator =);

Currently, there is no way to accept a particular overloaded member. Instead, when an overloaded member name
appears in a _Accept statement, calls to any member with that name are accepted.

�
A consequence of this design decision is that once one routine of a set of overloaded routines becomes

mutex, all the overloaded routines in that set become mutex members. The rationale is that members with
the same name should perform essentially the same function, and therefore, they all should be eligible to
accept a call.

�

A _When guard is considered true if it is omitted or if its conditional-expression evaluates to non-zero. The
conditional-expression of a _When may call a routine, but the routine must not block or context switch. The guard
must be true and an outstanding call to the specified mutex member(s) must exist for a call to be accepted. Notice, a
list of mutex members can be specified in an _Accept clause, e.g.:

_Accept(insert, remove);

If there are several mutex members that can be accepted, selection priority is established by the left-to-right placement
of the mutex members in the _Accept clause of the statement. Hence, the order of the mutex members in the _Accept
clause indicates their relative priority for selection if there are several outstanding calls. If the guard is true and there is
no outstanding call to the specified member(s), the acceptor is accept-blocked until a call to the appropriate member(s)
is made. If the guard is false, the program is aborted; hence, the _When clause can act as an assertion of correctness
in the simple case. Therefore, a guard is not the same as an if statement, e.g.:

if (count == 0) _Accept(mem); _When (count == 0) _Accept(mem);

In the right example, the program aborts if the conditional is false. (It is possible to simulate the if version using the
else clause discussed below.)

�
The reason for aborting execution is that the accept statement always causes the executing task to

accept-block for a call, but the false _When clause precludes any call from occurring; hence, the accepting
task blocks forever.

�

When a _Accept statement is executed, the acceptor is blocked and pushed on the top of the implicit accep-
tor/signalled stack and the mutex object is unlocked. The internal scheduler then schedules a task from the specified

2.9. SCHEDULING 23

mutex-member queue(s), possibly waiting until an appropriate call occurs. Notice, an accept statement accepts only
one call, regardless of the number of mutex members listed in the _Accept clause. The accepted member is then
executed like a member routine of a conventional class by the caller’s thread. If the caller is expecting a return value,
this value is returned using the return statement in the member routine. When the caller’s thread exits the mutex
member (or waits, as is discussed shortly), the mutex object is unlocked. Because the internal scheduler gives priority
to tasks on the acceptor/signalled stack of the mutex object over calling tasks, the acceptor is popped from the accep-
tor/signalled stack and made ready. When the acceptor becomes active, it has exclusive access to the object. Hence,
the execution order between acceptor and caller is stack order, as for a traditional routine call.

The extended form of the _Accept statement is conditionally accepts one of a group of mutex members, e.g.:

_When (conditional-expression) // optional guard
_Accept(mutex-member-name-list)

statement // statement
else _When (conditional-expression) // optional guard

_Accept(mutex-member-name-list)
statement // statement

. . .
. . .

. . .
_When (conditional-expression) // optional guard
else // optional terminating clause

statement

Before an _Accept clause is executed, its guard must be true and an outstanding call to its corresponding member(s)
must exist. If there are several mutex members that can be accepted, selection priority is established by the left-to-
right then top-to-bottom placement of the mutex members in the _Accept clauses of the statement. If some accept
guards are true and there are no outstanding calls to these members, the task is accept-blocked until a call to one of
these members is made. If all the accept guards are false and no _Accept clause can be executed immediately, the
program is aborted, unless there is a terminating else clause with a true guard, which is executed instead. Hence, the
terminating else clause allows a conditional attempt to accept a call without the acceptor blocking. Again, a group of
_Accept clauses is not the same as a group of if statements, e.g.:

if (c1) _Accept(mem1); _When (c1) _Accept(mem1);
else if (c2) _Accept(mem2); else _When (c2) _Accept(mem2);

The left example accepts only mem1 if c1 is true or only mem2 if c2 is true. The right example accepts either mem1 or
mem2 if c1 and c2 are true. Once the accepted call has completed or the caller waits, the statement after the accepting
_Accept clause is executed and the accept statement is complete.

�
Note, the syntax of the _Accept statement precludes the caller’s argument values from being accessed

in the conditional-expression of a _When. However, this deficiency is handled by the ability of a task to
postpone requests (see Section 2.9.3.2, p. 27).

�

�
WARNING: Beware the following possible syntactic confusion with the terminating else clause:

_Accept(mem1); _Accept(mem1);
else _Accept(mem2); else { _Accept(mem2) };

The left example accepts a call to either member mem1 or mem2. The right example accepts a call to
member mem1, if one is currently available; otherwise it accepts a call to member mem2. The syntactic
difference is subtle, and yet, the execution is significantly different (see also Section 8.3.1, p. 116). The
equivalent confusion can also occur with the if statement:

if (c1) . . . if (c1) . . .
else if (c2) . . .; else { if (c2) . . . };

�

2.9.2.2 Breaking a Rendezvous

The accept statement forms a rendezvous between the acceptor and the accepted tasks, where a rendezvous is a point
in time at which both tasks wait for a section of code to execute before continuing.

24 CHAPTER 2. � C++ TRANSLATOR

Task � Task �

rendezvous

The start of the rendezvous begins when the accepted mutex member begins execution and ends when the acceptor task
restarts execution, either because the accepted task finishes executing of the mutex member or the accepted task waits.
In the latter case, correctness implies sufficient code has been executed in the mutex member before the wait occurs for
the acceptor to continue successfully. Finally, for the definition of rendezvous, it does not matter which task executes
the rendezvous, but in � C++, it is the accepted task that executes it. It can be crucial to correctness that the acceptor
know if the accepted task does not complete the rendezvous code, otherwise the acceptor task continues under the
incorrect assumption that the rendezvous action has occurred. To this end, a concurrent exception is implicitly raised
at the acceptor task if the accepted member terminates abnormally (see Section 4.10.2, p. 75).

2.9.2.3 Accepting the Destructor

Accepting the destructor in a _Accept statement is used to terminate a mutex object when it is deallocated (like the
terminate clause of the select statement in Ada [Uni83, Sections 9.4, 9.7.1]). The destructor is accepted in the same
way as a mutex member, e.g.:

for (;;) {
_Accept(~DiskScheduler) { // request to terminate DiskScheduler

break;
} else _Accept(WorkRequest) { // request from disk
} else _Accept(DiskRequest) { // request from clients
} // _Accept

} // for
// cleanup code

However, the semantics for accepting a destructor are different from accepting a normal mutex member. When the call
to the destructor occurs, the caller blocks immediately because a mutex object’s storage cannot be deallocated if it is
being used by a thread. When the destructor is accepted, the caller is blocked and pushed onto the acceptor/signalled
stack instead of the acceptor. Therefore, control restarts at the accept statement without executing the destructor
member, which allows a mutex object to cleanup before it terminates. (This semantics is the same as signal, see
page 26.) Only when the caller to the destructor is popped off the acceptor/signalled stack by the internal scheduler
can the destructor execute. The destructor can reactivate any blocked tasks on the acceptor/signalled stack; at this
point, the task behaves like a monitor because its thread is halted.

�
While a mutex object can always be setup so that the destructor does all the cleanup, this can force

variables that logically belong in member routines into the mutex object. Furthermore, the fact that control
would not return to the _Accept statement when the destructor is accepted seemed more confusing than
having special semantics for accepting the destructor.

�

Accepting the destructor can be used by a mutex object to know when to stop without having to accept a special
call. For example, by allocating tasks in a specific way, a server task for a number of clients can know when the clients
are finished and terminate without having to be explicitly told, e.g.:

{
DiskScheduler ds; // start DiskScheduler task
{

Clients c1(ds), c2(ds), c3(ds); // start clients, which communicate with ds
} // wait for clients to terminate

} // implicit call to DiskScheduler
�

s destructor

2.9. SCHEDULING 25

2.9.2.4 Commentary

In contrast to Ada, a _Accept statement in � C++ places the code to be executed in a mutex member; thus, it is specified
separately from the _Accept statement. An Ada-style accept specifies the accept body as part of the accept statement,
requiring the accept statement to provide parameters and a routine body. Since we have found that having more than
one accept statement per member is rather rare, our approach gives essentially the same capabilities as Ada. As well,
accepting member routines also allows virtual routine redefinition, which is impossible with accept bodies. Finally,
an accept statement with parameters and a routine body does not fit with the design of C++ because it is like a nested
routine definition, and since routines cannot be nested in C++, there is no precedent for such a facility. It is important
to note that anything that can be done in Ada-style accept statements can be done within member routines, possibly
with some additional code. If members need to communicate with the block containing the _Accept statements, it can
be done by leaving “memos” in the mutex-type’s variables. In cases where there would be several different Ada-style
accept statements for the same entry, accept members would have to start with switching logic to determine which
case applies. While neither of these solutions is particularly appealing, the need to use them seems to arise only rarely.

2.9.3 Internal Scheduling

A complementary approach to external scheduling is internal scheduling. Instead of scheduling tasks from outside
the mutex object from the entry queue (the entry queue is still necessary), most of the scheduling occurs inside the
monitor. To do scheduling inside the monitor requires additional queues inside the monitor on which tasks can block
and subsequently be unblocked by other tasks. For that purpose, condition variables are provided, with an associated
wait and signal statement.

2.9.3.1 Condition Variables and Wait/Signal Statements

The type uCondition creates a queue object on which tasks can be blocked and reactivated in first-in first-out order, and
is defined:

class uCondition {
public:

void wait(); // wait on condition
void wait(long int info); // wait on condition with information
void signal(); // signal condition
void signalBlock(); // signal condition
bool empty() const;
long int front() const;

_DualEvent WaitingFailure;
};
uCondition DiskNotIdle;

A condition variable is owned by the mutex object that performs the first wait on it; subsequently, only the owner can
wait and signal that condition variable.

�
It is common to associate with each condition variable an assertion about the state of the mutex object.

For example, in a disk-head scheduler, a condition variable might be associated with the assertion “the
disk head is idle”. Waiting on that condition variable would correspond to waiting until the condition is
satisfied, that is, until the disk head is idle. Correspondingly, the active task would reactivate tasks waiting
on that condition variable only when the disk head became idle. The association between assertions and
condition variables is implicit and not part of the language.

�

To block a task on a condition queue, the active task in a mutex object calls member wait, e.g.,

DiskNotIdle.wait();

This statement causes the active task to block on condition DiskNotIdle, which unlocks the mutex object and invokes
the internal scheduler. Internal scheduling first attempts to pop a task from the acceptor/signalled stack. If there are
no tasks on the acceptor/signalled stack, the internal scheduler selects a task from the entry queue or waits until a call
occurs if there are no tasks; hence, the next task to enter is the one blocked the longest. If the internal scheduling did
not accept a call at this point, deadlock would occur.

26 CHAPTER 2. � C++ TRANSLATOR

When waiting, it is possible to optionally store an integer value with a waiting task on a condition queue by passing
an argument to wait, e.g.:

DiskNotIdle.wait(integer-expression);

If no value is specified in a call to wait, the value for that blocked task is undefined. The integer value can be accessed
by other tasks through the uCondition member routine front. This value can be used to provide more precise information
about a waiting task than can be inferred from its presence on a particular condition variable. For example, the value
of the front blocked task on a condition can be examined by a signaller to help make a decision about which condition
variable it should signal next. This capability is useful, for example, in a problem like the readers and writer. (See
Appendix C.1, p. 141 for an example program using this feature, but only after reading Section 2.10 on monitors.)
In that case, reader and writer tasks wait on the same condition queue to preserve first-in first-out (FIFO) order and
each waiting task is marked with a value for reader or writer, respectively. A task that is signalling can first check
if the awaiting task at the head of a condition queue is a reader or writer task by examining the stored value before
signalling.

�
The value stored with a waiting task and examined by a signaller should not be construed as a message

between tasks. The information stored with the waiting task is not meant for a particular task nor is it
received by a particular task. Any task in the monitor can examine it. Also, the value stored with each
task is not a priority for use in the subsequent selection of a task when the monitor is unlocked.

If this capability did not exist, it can be mimicked by creating and managing an explicit queue in the
monitor that contains the values. Nodes would have to be added and removed from the explicit queue
as tasks are blocked and restarted. Since there is already a condition queue and its nodes are added and
removed at the correct times, it seemed reasonable to allow users to store some additional data with the
blocked tasks.

�

To unblock a task from a condition variable, the active task in a mutex object calls either member signal or
signalBlock. For member signal, e.g.:

DiskNotIdle.signal();

the effect is to remove one task from the specified condition variable and push it onto the acceptor/signalled stack.
The signaller continues execution and the signalled task is scheduled by the internal scheduler when the mutex object
is next unlocked. This semantics is different from the _Accept statement, which always blocks the acceptor; the
signaller does not block for signal. For member signalBlock, e.g.:

DiskNotIdle.signalBlock();

the effect is to remove one task from the specified condition variable and make it the active task, and push the signaller
onto the acceptor/signalled stack. The signalled task continues execution and the signaller is scheduled by the internal
scheduler when the mutex object is next unlocked. This semantics is like the _Accept statement, which always blocks
the acceptor. For either kind of signal, signalling an empty condition just continues executions, i.e., it does nothing.

�
The _Accept, wait, signal and signalBlock can be executed by any routine of a mutex type. Even

though these statements block the current task, they can be allowed in any member routine because mem-
ber routines are executed by the caller, not the task the member is defined in. This capability is to be
contrasted to Ada where waiting in an accept body would cause the task to deadlock.

�

The member routine empty() returns false if there are tasks blocked on the queue and true otherwise. The member
routine front returns an integer value stored with the waiting task at the front of the condition queue. It is an error to
examine the front of an empty condition queue; therefore, a condition must be checked to verify that there is a blocked
task, e.g.:

if (! DiskNotIdle.empty() && DiskNotIdle.front() == 1) . . .

(This capability is discussed in detail shortly.)
It is not meaningful to read or to assign to a condition variable, or copy a condition variable (e.g., pass it as a value

parameter), or use a condition variable if not its owner.

2.10. MONITOR 27

2.9.3.2 Commentary

The ability to postpone a request is an essential requirement of a programming language’s concurrency facilities.
Postponement may occur multiple times during the servicing of a request while still allowing a mutex object to accept
new requests.

In simple cases, the _When construct can be used to accept only requests that can be completed without postpone-
ment. However, when the selection criteria become complex, e.g., when the parameters of the request are needed to
do the selection or information is needed from multiple queues, it is simpler to unconditionally accept a request and
subsequently postpone it if it does not meet the selection criteria. This approach avoids complex selection expressions
and possibly their repeated evaluation. In addition, all the normal programming language constructs and data struc-
tures can be used in the process of making a decision to postpone a request, instead of some fixed selection mechanism
provided in the programming language, as in SR [AOC

�

88] and Concurrent C++ [GR88].

Regardless of the power of a selection facility, none can deal with the need to postpone a request after it is accepted.
In a complex concurrent system, a task may have to make requests to other tasks as part of servicing a request. Any
of these further requests can indicate that the current request cannot be completed at this time and must be postponed.
Thus, it is essential that a request be postponable even after it is accepted because of any number of reasons during the
servicing of the request. Condition variables seem essential to support this facility.

An alternative approach to condition variables is to send the request to be postponed to another (usually non-public)
mutex member of the object (like Ada 95’s requeue statement). This action re-blocks the request on that mutex
member’s entry queue, which can be subsequently accepted when the request can be restarted. However, there are
problems with this approach. First, the postponed request may not be able to be sent directly from a mutex member to
another mutex member because deadlock occurs due to synchronous communication. (Asynchronous communication
solves this problem, but as stated earlier, imposes a substantial system complexity and overhead.) The only alternative
is to use a nomutex member, which calls a mutex member to start the request and checks its return code to determine if
the request must be postponed. If the request is to be postponed, another mutex member is invoked to block the current
request until it can be continued. Unfortunately, structuring the code in this fashion becomes complex for non-trivial
cases and there is little control over the order that requests are processed. In fact, the structuring problem is similar
to the one when simulating a coroutine using a class or subroutine, where the programmer must explicitly handle
the different execution states. Second, any mutex member servicing a request may accumulate temporary results. If
the request must be postponed, the temporary results must be returned and bundled with the initial request that are
forwarded to the mutex member that handles the next step of the processing; alternatively, the temporary results can
be re-computed at the next step if that is possible. In contrast, waiting on a condition variable automatically saves the
execution location and any partially computed state.

2.10 Monitor

A monitor is an object with mutual exclusion and so it can be accessed simultaneously by multiple tasks. A mon-
itor provides a mechanism for indirect communication among tasks and is particularly useful for managing shared
resources. A monitor type has all the properties of a class. The general form of the monitor type is the following:

_Mutex class monitor-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
public:

. . . // these members are visible externally
};

The macro name _Monitor is defined to be “_Mutex class” in include file uC++.h.

2.10.1 Monitor Creation and Destruction

A monitor is the same as a class object with respect to creation and destruction, e.g.:

28 CHAPTER 2. � C++ TRANSLATOR

_Mutex class M {
public:

void r(. . .) . . . // mutex member
};
M *mp; // pointer to a M
{ // start a new block

M m, ma[3]; // local creation
mp = new M; // dynamic creation
. . .

} // wait for m, ma[0], ma[1] and ma[2] to terminate and then deallocate
. . .
delete mp; // wait for mp

�

s instance to terminate and then deallocate

Because a monitor is a mutex object, the execution of its destructor waits until it can gain access to the monitor, just
like the other mutex members of a monitor, which can delay the termination of the block containing a monitor or the
deletion of a dynamically allocated monitor.

2.10.2 Monitor Control and Communication

In � C++, both internal and external scheduling are provided, where most traditional monitors provide only internal
scheduling. Figure 2.6 compares the traditional internal scheduling style using explicit condition variables to the
external scheduling style using accept statements. The problem is the exchange of values (telephone numbers) between
two kinds of tasks (girls and boys). (While _Accept allows the removal of all condition variables in this case, this is
not always possible.)

Internal Scheduling External Scheduling

_Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting;

public:
int Girl(int PhoneNo) {

if (BoyWaiting.empty()) {
GirlWaiting.wait();
GirlPhoneNo = PhoneNo;

} else {
GirlPhoneNo = PhoneNo;
BoyWaiting.signalBlock();

} // if
return BoyPhoneNo;

} // Girl
int Boy(int PhoneNo) {

if (GirlWaiting.empty()) {
BoyWaiting.wait();
BoyPhoneNo = PhoneNo;

} else {
BoyPhoneNo = PhoneNo;
GirlWaiting.signalBlock();

} // if
return GirlPhoneNo;

} // Boy
}; // DatingService

_Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo;

public:
DatingService() {

GirlPhoneNo = BoyPhoneNo = 1;
} // DatingService
int Girl(int PhoneNo) {

GirlPhoneNo = PhoneNo;
if (BoyPhoneNo == 1) {

_Accept(Boy);
} // if
int temp = BoyPhoneNo;
BoyPhoneNo = 1;
return temp;

} // Girl
int Boy(int PhoneNo) {

BoyPhoneNo = PhoneNo;
if (GirlPhoneNo == 1) {

_Accept(Girl);
} // if
int temp = GirlPhoneNo;
GirlPhoneNo = 1;
return temp;

} // Boy
}; // DatingService

Figure 2.6: Internal versus External Scheduling

2.11. COROUTINE MONITOR 29

2.11 Coroutine Monitor

The coroutine monitor is a coroutine with mutual exclusion, making it safely accessible by multiple tasks. A coroutine-
monitor type has a combination of the properties of a coroutine and a monitor, and can be used where a combination
of these properties are needed, such as a finite-state machine that is used by multiple tasks. A coroutine-monitor type
has all the properties of a class. The general form of the coroutine-monitor type is the following:

_Mutex _Coroutine coroutine-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The macro name _Cormonitor is defined to be “_Mutex _Coroutine” in include file uC++.h.

2.11.1 Coroutine-Monitor Creation and Destruction

A coroutine monitor is the same as a monitor with respect to creation and destruction.

2.11.2 Coroutine-Monitor Control and Communication

A coroutine monitor can make use of suspend, resume, _Accept and uCondition variables, wait, signal and signalBlock
to move a task among execution states and to block and restart tasks that enter it. When creating a cyclic call-graph
using a coroutine monitor, it is the programmer’s responsibility to ensure that at least one of the members in the cycle
is a _Nomutex member or deadlock occurs because of the mutual exclusion.

2.12 Task

A task is an object with its own thread of control and execution state, and whose public member routines provide
mutual exclusion. A task type has all the properties of a class. The general form of the task type is the following:

_Task task-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The task type has one distinguished member, named main, in which the new thread starts execution; this distinguished
member is called the task main. Instead of allowing direct interaction with main, its visibility is normally private
or protected. The decision to make the task main private or protected depends solely on whether derived classes
can reuse the task main or must supply their own. Hence, a user interacts with a task indirectly through its member
routines. This approach allows a task type to have multiple public member routines to service different kinds of
requests that are statically type checked. A task main cannot have parameters or return a result, but the same effect can
be accomplished indirectly by passing values through the task’s global variables, called communication variables,
which are accessible from both the task’s member and main routines.

2.12.1 Task Creation and Destruction

A task is the same as a class object with respect to creation and destruction, e.g.:

30 CHAPTER 2. � C++ TRANSLATOR

_Task T {
void main() . . . // task main

public:
void r(. . .) . . .

};
T *tp; // pointer to a T task
{ // start a new block

T t, ta[3]; // local creation
tp = new T; // dynamic creation
. . .
t.r(. . .); // call a member routine that must be accepted
ta[1].r(. . .); // call a member routine that must be accepted
tp >r(. . .); // call a member routine that must be accepted
. . .

} // wait for t, ta[0], ta[1] and ta[2] to terminate and then deallocate
. . .
delete tp; // wait for tp

�

s instance to terminate and then deallocate

When a task is created, the appropriate task constructor and any base-class constructors are executed in the normal
order by the creating thread. The task’s execution-state and thread are created and the starting point for the new thread
(activation point) is initialized to the task’s main routine visible by the inheritance scope rules from the task type. After
this point, the creating task executes concurrently with the new task. The location of a task’s variables—in the task’s
data area or in member routine main—depends on whether the variables must be accessed by member routines other
than main. main executes until its thread blocks or terminates.

A task terminates when its main routine terminates. When a task terminates, so does the task’s thread of control.
At this point, the task becomes a monitor and can still be used in that form. A task’s destructor is invoked by the
deallocating thread when the block containing the task declaration terminates or by an explicit delete statement for a
dynamically allocated task. Because a task is a mutex object, a block cannot terminate until all tasks declared in the
block terminate. Similarly, deleting a task on the heap must also wait until the task being deleted has terminated.

While a task that creates another task is conceptually the parent and the created task its child, � C++ makes no
implicit use of this relationship nor does it provide any facilities based on this relationship. Once a task is declared it
has no special relationship with its declarer other than what results from the normal scope rules.

Like a coroutine, a task can access all the external variables of a C++ program and the heap area. Also, any
static member variables declared within a task are shared among all instances of that task type. If a task makes
global references or has static variables, there is the general problem of concurrent access to these shared variables.
Therefore, it is suggested that these kinds of references be used with extreme caution.

�
A coroutine is not owned by the task that creates it; it can be “passed” to another task. However,

to ensure that only one thread is executing a coroutine at a time, the passing around of a coroutine must
involve a protocol among its users, which is the same sort of protocol required when multiple tasks share
a data structure.

�

2.12.2 Inherited Members

Each task type, if not derived from some other task type, is implicitly derived from the task type uBaseTask, e.g.:

_Task task-name : public uBaseTask {
. . .

};

where the interface for the base class uBaseTask is:

2.12. TASK 31

_Task uBaseTask : public uBaseCoroutine { // inherits from coroutine base type
public:

uBaseTask();
uBaseTask(unsigned int stacksize);
uBaseTask(uCluster &cluster);
uBaseTask(uCluster &cluster, unsigned int stacksize);

void yield(unsigned int times = 1);
uCluster &migrate(uCluster &cluster);
uCluster &getCluster() const;
uBaseCoroutine &getCoroutine() const;

enum State { Start, Ready, Running, Blocked, Terminate };
State getState() const;

int getActivePriority();
int getBasePriority();

};

The public member routines of uBaseCoroutine are inherited and have the same functionality (see Section 2.7.2, p. 15).
The overloaded constructor routine uBaseTask has the following forms:

uBaseTask() – creates a task on the current cluster with the cluster’s default stack size (same as uBaseCoroutine()).

uBaseTask(unsigned int stacksize) – creates a task on the current cluster with the specified stack size (in bytes)
(same as uBaseCoroutine(int stacksize)).

uBaseTask(uCluster &cluster) – creates a task on the specified cluster with that cluster’s default stack size.

uBaseTask(uCluster &cluster, unsigned int stacksize) – creates a task on the specified cluster with the specified
stack size (in bytes).

A task type can be designed to allow declarations to specify the cluster on which creation occurs and the stack size by
doing the following:

_Task T {
public:

T() : uBaseTask(8192) {}; // current cluster, 8K stack
T(unsigned int s) : uBaseTask(s) {}; // current cluster and user stack size
T(uCluster &c) : uBaseTask(c) {}; // user cluster
T(uCluster &c, unsigned int s) : uBaseTask(c,s) {}; // user cluster and stack size
. . .

};
uCluster c; // create a new cluster
T x, y(16384); // x has a default stack, y has a 16K stack
T z(c); // z created in cluster c with default stack size
T w(c, 16384); // w created in cluster c and has a 16K stack

The member routine routine yield gives up control of the virtual processor to another ready task the specified
number of times. For example, the call yield(5) immediately returns control to the � C++ kernel and the next 4 times
the task is scheduled for execution. If there are no other ready tasks, the yielding task is simply stopped and restarted
5 times (i.e., 5 context switches from itself to itself). yield allows a task to relinquish control when it has no current
work to do or when it wants other ready tasks to execute before it performs more work. An example of the former
situation is when a task is polling for an event, such as a hardware event. After the polling task has determined the
event has not occurred, it can relinquish control to another ready task, e.g., yield(1). An example of the latter situation
is when a task is creating many other tasks. The creating task may not want to create a large number of tasks before the
created tasks have a chance to begin execution. (Task creation occurs so quickly that it is possible to create 100–1000
tasks before pre-emptive scheduling occurs.) If after the creation of several tasks the creator yields control, some
created tasks have an opportunity to begin execution before the next group of tasks is created. This facility is not a

32 CHAPTER 2. � C++ TRANSLATOR

mechanism to control the exact order of execution of tasks; pre-emptive scheduling and/or multiple processors make
this impossible.

�
When the yield option is used, calls to yield(rand() % 3) are automatically inserted at the beginning

of each member routine.
�

Although yield is a public member routine of every task type, one task cannot yield another task; a task may only
yield itself because a task can only be yielded when it is running, which is true when a task yields itself. If one task
could yield another, the yielded task may be ready or blocked, but in either of these states there is no virtual processor
to yield. If the yielded task is running, it would have to be interrupted and blocked, but it may be performing a critical
operation that cannot be interrupted. Attempting to make all cases work correctly and consistently is problematic and
not particularly useful. Finally, the ability to perform such a powerful operation on a task without its permission seems
unreasonable.

The member routine migrate allows a task to move itself from one cluster to another so that it can access resources
dedicated to that cluster’s processor(s), e.g.:

from-cluster-reference = migrate(to-cluster-reference)

Although migrate is a public member routine, one task cannot migrate another task; a task may only migrate itself for
the same reason as for yield.

The member routine getCluster returns the current cluster a task is executing on. The member routine getCoroutine
returns the current coroutine being executed by a task or the task itself if it is not executing a coroutine.

The member routine getState returns the current state of a task, which is one of the enumerated values
uBaseTask::Start, uBaseTask::Ready, uBaseTask::Running, uBaseTask::Blocked or uBaseTask::Terminate.

Two member routines are used in real-time programming (see Chapter 8, p. 113). The member routine getActivePriority
returns the current active priority of a task, which is an integer value between 0 and 31. The member routine
getBasePriority returns the current base priority of a task, which is an integer value between 0 and 31.

The free routine:

uBaseTask &uThisTask();

is used to determine the identity of the task executing this routine. Because it returns a reference to the base task type,
uBaseTask, for the current task, this reference can only be used to access the public routines of type uBaseTask and
uBaseCoroutine. For example, a free routine can verify the stack or yield execution of the calling task by performing
the following:

uThisTask().verify();
uThisTask().yield();

As well, printing a task’s address for debugging purposes must done like this:

cout << "task:" << &uThisTask() << endl; // notice the ampersand (&)

2.12.3 Task Control and Communication

A task can make use of _Accept and uCondition variables, wait, signal and signalBlock to block and unblock tasks that
enter it. Appendix C.3, p. 147 shows the archetypical disk scheduler implemented as a task that must process requests
in an order other than first-in first-out to achieve efficient utilization of the disk.

2.13 Commentary
Initially, every attempt was made to add the new � C++ types and statements by creating a library of class definitions
that were used through inheritance and preprocessor macros. This approach has been used by others to provide
coroutine facilities [Sho87, Lab90] and simple parallel facilities [DG87, BLL88]. However, after discovering many
limitations with all library approaches, it was abandoned in favour of language extensions.

The most significant problem with all library approaches to concurrency is the lack of soundness and/or effi-
ciency [Buh95]. A compiler and/or assembler may perform valid sequential optimizations that invalidate a correct
concurrent program. Code movement, dead code removal, and copying values into registers are just some examples
of optimizations that can invalidate a concurrent program, e.g., moving code into or out of a critical section, remov-
ing a timing loop, or copying a shared variable into a register making it invisible to other processors. To preserve

2.13. COMMENTARY 33

soundness, it is necessary to identify and selectively turn off optimizations for those concurrent sections of code that
might cause problems. However, a programmer may not be aware of when or where a compiler/assembler is using
an optimization that affects concurrency; only the compiler/assembler writer has that knowledge. Furthermore, unless
the type of a variable/parameter conveys concurrent usage, neither the compiler nor the assembler can generate sound
code for separately compiled programs and libraries. Therefore, when using a concurrent library, a programmer can at
best turn off all optimizations in an attempt to ensure soundness, which can have a significant performance impact on
the remaining execution of the program, which is composed of large sections of sequential code that can benefit from
the optimizations.

Even if a programmer can deal with the soundness/efficiency problem, there are other significant problems with
attempting to implement concurrency via the library approach. In general, a library approach involves defining an
abstract class, Task, which implements the task abstraction. New task types are created by inheritance from Task, and
tasks are instances of these types.

On this approach, thread creation must be arranged so that the task body does not start execution until all of
the task’s initialization code has finished. One approach requires the task body (the code that appears in a � C++
task’s main) to be placed at the end of the new class’s constructor, with code to start a new thread in Task::Task().
One thread then continues normally, returning from Task::Task() to complete execution of the constructors, while
the other thread returns directly to the point where the task was declared. This forking of control is accomplished
in the library approach by having one thread “diddle” with the stack to find the return address of the constructor
called at the declaration. However, this scheme prevents further inheritance; it is impossible to derive a type from a
task type if the new type requires a constructor, since the new constructor would be executed only after the parent
constructor containing the task body. It also seems impossible to write stack-diddling code that causes one thread to
return directly to the declaration point if the exact number of levels of inheritance is unknown. Another approach that
does not rely on stack diddling while still allowing inheritance is to determine when all initialization is completed so
that the new thread can be started. However, it is impossible in C++ (and most other object-oriented programming
languages) for a constructor to determine if it is the last constructor executed in an inheritance chain. A mechanism
like Simula’s [Sta87] inner could be used to ensure that all initialization had been done before the task’s thread is
started. However, it is not obvious how inner would work in a programming language with multiple inheritance.

PRESTO (and now Java [GJSB00]) solved this problem by providing a start() member routine in class Task, which
must be called after the creation of a task. Task::Task() would set up the new thread, but start() would set it running.
However, this two-step initialization introduces a new user responsibility: to invoke start before invoking any member
routines or accessing any member variables.

A similar two-thread problem occurs during deletion when a destructor is called. The destructor of a task can
be invoked while the task body is executing, but clean-up code must not execute until the task body has terminated.
Therefore, the code needed to wait for a thread’s termination cannot simply be placed in Task::~Task(), because it
would be executed after all the derived class destructors have executed. Task designers could be required to put the
termination code in the new task type’s destructor, but that prevents further inheritance. Task could provide a finish()
routine, analogous to start(), which must be called before task deletion, but that is error-prone because a user may fail
to call finish appropriately, for example, before the end of a block containing a local task.

Communication among tasks also presents difficulties. In library-based schemes, it is often done via message
queues. However, a single queue per task is inadequate; the queue’s message type inevitably becomes a union of
several “real” message types, and static type checking is compromised. (One could use inheritance from a Message
class, instead of a union, but the task would still have to perform type tests on messages before accessing them.)
If multiple queues are used, some analogue of the Ada select statement is needed to allow a task to block on more
than one queue. Furthermore, there is no statically enforceable way to ensure that only one task is entitled to receive
messages from any particular queue. Hence the implementation must handle the case of several tasks that are waiting
to receive messages from overlapping sets of queues. For example,

34 CHAPTER 2. � C++ TRANSLATOR

class TaskType : Task {
public:

MsgQueueType A; // queue associated with each instance of the task
static MsgQueueType B; // queue shared among all instances of the task type

protected:
void main() {

. . .
_Accept i = A.front(); // accept from either message queue
else _Accept i = B.front();
. . .

}
};
TaskType T1, T2;

Tasks T1 and T2 are simultaneously accepting from two different queues. While it is straightforward to check for the
existence of data in the queues, if there is no data, both T1 and T2 block waiting for data to appear on either queue.
To implement this, tasks have to be associated with both queues until data arrives, given data when it arrives, and
then removed from both queues. Implementing this operation is expensive since the addition or removal of a message
to/from a queue must be an atomic operation across all queues involved in a waiting task’s accept statement to ensure
that only one data item from the accepted set of queues is given to the accepting task.

If the more natural routine-call mechanism is to be used for communication among tasks, each public member
routine would have to have special code at the start and possibly at the exits of each public member, which the
programmer would have to provide. Other object-oriented programming languages that support inheritance of routines,
such as LOGLAN’88 [CKL

�

88] and Beta [MMPN93], or wrapper routines, as in GNU C++ [Tie88], might be able to
provide automatically any special member code. Furthermore, we could not find any convenient way to provide an
Ada-like select statement without extending the language.

In the end, we found the library approach to be completely unsatisfactory. We decided that language extensions
would better suit our goals by providing soundness and efficiency, greater flexibility and consistency with existing
language features, and static checking.

2.14 Inheritance
C++ provides two forms of inheritance: private and protected inheritance, which provide code reuse, and public
inheritance, which provides reuse and subtyping (a promise of behavioural compatibility). (These terms must not be
confused with C++ visibility terms with the same names.)

In C++, class definitions can inherit from one another using both single and multiple inheritance. In � C++, there
are multiple kinds of types, e.g., class, mutex, coroutine, and task, so the situation is more complex. The problem is
that mutex, coroutine and task types provide implicit functionality that cannot be arbitrarily mixed. While there are
some implementation difficulties with certain combinations, the main reason is a fundamental one. Types are written
as a class, mutex, coroutine or task, and the coding styles used in each cannot, in general, be arbitrarily mixed. For
example, an object produced by a class that inherits from a task type appears to be a non-concurrent object but its
behaviour is concurrent. While object behaviour is a user issue, there is a significantly greater chance of problems if
users casually combine types of different kinds. Table 2.3 shows the forms of inheritance allowed in � C++.

base NO multiple inheritance
derived struct/class coroutine monitor coroutine monitor task

struct/class
�

X X X X
coroutine

� �
X X X

monitor
�

X
�

X X
coroutine monitor

� � � �
X

task
�

X
�

X
�

Table 2.3: Inheritance among Type Generators

First, the case of single private/protected/public inheritance among homogeneous kinds of type, i.e., the kinds of

2.14. INHERITANCE 35

the base and derived type are the same, is supported in � C++ (major diagonal in Table 2.3), e.g.:

_Coroutine Cbase {};
_Coroutine Cderived : private Cbase {}; // homogeneous private inheritance
_Monitor Mbase {};
_Monitor Mderived : protected Mbase {}; // homogeneous protected inheritance
_Cormonitor CMbase {};
_Cormonitor CMderived : public CMbase {}; // homogeneous public inheritance
_Task Tbase {};
_Task Tderived : protected Tbase {}; // homogeneous protected inheritance

In this situation, all implicit functionality matches between base and derived types, and therefore, there are no prob-
lems.

Second, the case of single private/protected/public inheritance among heterogeneous kinds of type, i.e., the kinds
of the base and derived type are different, is supported in � C++ only if the derived kind is more specific than the base
kind with respect to the elementary execution properties (see Section 1.2, p. 4), e.g.:

class cbase {};

_Coroutine Cderived : public cbase {}; // heterogeneous public inheritance
_Monitor Mderived : public cbase {}; // heterogeneous public inheritance
_Cormonitor CMderived1 : private cbase {}; // heterogeneous private inheritance
_Cormonitor CMderived2 : protected Cbase {}; // heterogeneous protected inheritance
_Cormonitor CMderived3 : public Mbase {}; // heterogeneous public inheritance
_Task Tderived1 : protected cbase {}; // heterogeneous protected inheritance
_Task Tderived2 : public Mbase {}; // heterogeneous public inheritance

For example, a coroutine monitor can inherit from a class, a monitor, or a coroutine because the coroutine monitor has
the elementary execution properties of each of these kinds of type: The only exception to this rule is between a task
and coroutine because the logical use of main is completely different between these kinds of type. It seems unlikely
that a task could inherit the main routine from a coroutine and have the coroutine’s main perform any reasonable action
with respect to the task’s thread and mutex members.

Heterogeneous inheritance is useful for generating concurrent types from existing non-concurrent types, e.g., to
define a mutex queue by deriving from a simple queue, or for use with container classes requiring additional link
fields. For example, to change a simple queue to a mutex queue requires a monitor to inherit from the class Queue and
redefine all of the class’s member routines so mutual exclusion occurs when they are invoked, e.g.:

class Queue { // sequential queue
public:

void insert(. . .) . . .
virtual void remove(. . .) . . .

};
_Mutex class MutexQueue : public Queue { // concurrent queue

virtual void insert(. . .) . . .
virtual void remove(. . .) . . .

};
Queue *qp = new MutexQueue; // subtyping allows assignment
qp >insert(. . .); // call to a non-virtual member routine, statically bound
qp >remove(. . .); // call to a virtual member routine, dynamically bound

However, there is a fundamental problem with non-virtual members in C++, which can cause significant confu-
sion because non-virtual routine calls are statically bound. For example, routines Queue::insert and Queue::remove
do not provide mutual exclusion because they are members of the class, while routines MutexQueue::insert and
MutexQueue::remove do provide mutual exclusion because they are members of a mutex type. Because the pointer
variable qp is of type Queue, the call qp >insert calls Queue::insert even though insert is redefined in MutexQueue;
so no mutual exclusion occurs. In contrast, the call to remove is dynamically bound, so the redefined routine in the
monitor is invoked and appropriate synchronization occurs. The unexpected lack of mutual exclusion would cause
errors. In object-oriented programming languages that have only virtual member routines, this is not a problem. The
problem does not occur with private or protected inheritance because no subtype relationship is created, and hence,
the assignment to qp would be invalid.

36 CHAPTER 2. � C++ TRANSLATOR

Multiple inheritance is allowed, with the restriction that at most one of the immediate base classes may be a mutex,
coroutine, or task type, e.g.:

_Coroutine Cderived : public Cbase, public cbase {};
_Monitor Mderived : public Mbase, public cbase {};
_Cormonitor CMderived : protected Cbase, public cbase {};
_Task Tderived : public Mbase, protected cbase {};

Some of the reasons for this restriction are technical and some relate to the coding styles of the different kinds of type.
Multiple inheritance is conceivable for the mutex property, but technically it is difficult to ensure a single root object to
manage the mutual exclusion. Multiple inheritance of the execution-state property is technically difficult for the same
reason, i.e., to ensure a single root object. As well, there is the problem of selecting the correct main to execute on the
execution state, e.g., if the most derived class does not specify a main member, there could be multiple main members
to choose from in the hierarchy. Multiple inheritance of the thread property is technically difficult because only one
thread must be started regardless of the complexity of the hierarchy. In general, multiple inheritance is not as useful a
mechanism as it initially seemed [Car90].

2.15 Explicit Mutual Exclusion and Synchronization
The following locks are low-level mechanisms for providing mutual exclusion of critical sections and synchronization
among tasks. In general, explicit locks are unnecessary to build highly concurrent systems; the mutual exclusion
provided by monitors, coroutine monitors and tasks, and the synchronization provided by _Accept, wait, signal and
signalBlock are sufficient. Nevertheless, several low-level lock mechanisms are provided for teaching purposes and for
special situations.

2.15.1 Counting Semaphore

A semaphore in � C++ is implemented as a counting semaphore as described by Dijkstra [Dij65]. A counting semaphore
has two parts: a counter and a list of waiting tasks. Both the counter and the list of waiting tasks is managed by the
semaphore. The type uSemaphore defines a semaphore:

class uSemaphore {
public:

uSemaphore(unsigned int count = 1);
void P();
void P(uSemaphore &s);
bool TryP();
void V(unsigned int times = 1);
int counter() const;
bool empty() const;

};
uSemaphore x, y(1), *z;
z = new uSemaphore(4);

The declarations create three semaphore variables and initializes them to the value 1, 0, and 4, respectively.
The constructor routine uSemaphore has the following form:

uSemaphore(int count) – this form specifies an initialization value for the semaphore counter. Appropriate val-
ues are

�
0. The default count is 1.

The member routines P and V are used to perform the classical counting semaphore operations. P decrements
the semaphore counter if the value of the semaphore counter is greater than zero and continues; if the semaphore
counter is equal to zero, the calling task blocks. If P is passed a semaphore, that semaphore is Ved before Ping on the
semaphore object; the two operations occur atomically. The member routine TryP attempts to acquire the semaphore
but does not block. TryP returns true if the semaphore is acquired and false otherwise. V wakes up the task blocked
for the longest time if there are tasks blocked on the semaphore and increments the semaphore counter. If V is passed
a positive integer value, the semaphore is Ved that many times. The member routine counter returns the value of the
semaphore counter, � , which can be negative, zero, or positive: negative means abs(�) tasks are blocked waiting to
acquire the semaphore, and the semaphore is locked; zero means no tasks are waiting to acquire the semaphore, and

2.15. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 37

the semaphore is locked; positive means the semaphore is unlocked and allows � tasks to acquire the semaphore. The
member routine empty returns false if there are threads blocked on the semaphore and true otherwise.

It is not meaningful to read or to assign to a semaphore variable, or copy a semaphore variable (e.g., pass it as a
value parameter).

To use counting semaphores in a � C++ program, include the file:

#include <uSemaphore.h>

2.15.1.1 Commentary

The wait and signal operations on conditions are very similar to the P and V operations on counting semaphores. The
wait statement can block a task’s execution while a signal statement can cause resumption of another task. There
are, however, differences between them. The P operation does not necessarily block a task, since the semaphore
counter may be greater than zero. The wait statement, however, always blocks a task. The signal statement can make
ready (unblock) a blocked task on a condition just as a V operation makes ready a blocked task on a semaphore. The
difference is that a V operation always increments the semaphore counter; thereby affecting a subsequent P operation.
A signal statement on an empty condition does not affect a subsequent wait statement, and therefore, is lost. Another
difference is that multiple tasks blocked on a semaphore can resume execution without delay if enough V operations
are performed. In the mutex-type case, multiple signal statements do unblock multiple tasks, but only one of these
tasks is able to execute because of the mutual-exclusion property of the mutex type.

2.15.2 Lock

A lock is either closed (0) or opened (1), and tasks compete to acquire the lock after it is released. Unlike a semaphore,
which blocks tasks that cannot continue execution immediately, a lock may allow tasks to loop (spin) attempting to
acquire the lock (busy wait). Locks do not ensure that tasks competing to acquire it are served in any particular order;
in theory, starvation can occur, in practice, it is usually not a problem.

The type uLock defines a lock:

class uLock {
public:

uLock(unsigned int value = 1);
void acquire();
bool tryacquire();
void release();

};
uLock x, y, *z;
z = new uLock(0);

The declarations create three lock variables and initializes the first two to open and the last to closed.
The constructor routine uLock has the following form:

uLock(int value) – this form specifies an initialization value for the lock. Appropriate values are 0 and 1. The
default value is 1.

The member routines acquire and release are used to atomically acquire and release the lock, closing and opening
it, respectively. acquire acquires the lock if it is open, otherwise the calling task spins waiting until it can acquire
the lock. The member routine tryacquire makes one attempt to try to acquire the lock, i.e., it does not spin waiting.
tryacquire returns true if the lock is acquired and false otherwise. release releases the lock, which allows any waiting
tasks to compete to acquire the lock. Any number of releases can be performed on a lock as a release simply sets the
lock to opened (1).

It is not meaningful to read or to assign to a lock variable, or copy a lock variable (e.g., pass it as a value parameter).

2.15.3 Owner Lock

An owner lock is owned by the task that acquires it; all other tasks attempting to acquire the lock block until the owner
releases it. The owner of an owner lock can acquire the lock multiple times, but a matching number of releases must
occur or the lock remains in the owner’s possession and other tasks cannot acquire it. (Owner locks are used in the
implementation of the non-blocking I/O stream library, see Section 3.2, p. 45). As a result, an owner lock can only be

38 CHAPTER 2. � C++ TRANSLATOR

used for mutual exclusion, because synchronization requires the locking task to be different from the unlocking one.
The type uOwnerLock defines an owner lock:

class uOwnerLock {
public:

uOwnerLock();
unsigned int times() const;
uBaseTask *owner() const;
void acquire();
bool tryacquire();
void release();

};
uOwnerLock x, y, *z;
z = new uOwnerLock;

The declarations create three owner-lock variables and initializes them to open.
The member routine times returns the number of times the lock has been acquired by the lock owner. The member

routine owner returns the task owning the lock or NULL if there is no owner. The member routine acquire acquires the
lock if it is open, otherwise the calling task blocks until it can acquire the lock. The member routine tryacquire makes
one attempt to try to acquire the lock, i.e., it does not block; the value true is returned if the lock is acquired and false
otherwise. The member routine release releases the lock, and if there are waiting tasks, one is restarted; waiting tasks
are released in FIFO order.

It is not meaningful to read or to assign to an owner lock variable, or copy an owner lock variable (e.g., pass it as
a value parameter).

2.15.4 Condition Lock

The condition lock is like a condition variable (see Section 2.9.3.1, p. 25), creating a queue object on which tasks
block and unblock; however, there is no monitor construct to simplify and ensure correct usage of condition locks.
Instead, a condition lock is dependent on the owner lock for its functionality, and collectively these two kinds of locks
can be used to build a monitor, providing both synchronization and mutual exclusion. As for a condition variable, a
condition lock can only be used for synchronization, because the wait operation always blocks. The type uCondLock
defines a condition lock:

class uCondLock {
public:

uCondLock();
bool empty();
void wait(uOwnerLock &lock);
bool timedwait(uOwnerLock &lock, uDuration d);
void signal();
void broadcast();

};
uCondLock x, y, *z;
z = new uCondLock;

The declarations create three condition locks and initializes them to open.
The member routine empty() returns false if there are tasks blocked on the queue and true otherwise. The routines

wait and signal are used to block a thread on and unblock a thread from the queue of a condition, respectively. The
wait routine atomically blocks the calling task and releases the argument owner-lock; in addition, the wait routine
re-acquires its argument owner-lock before returning. The timedwait routine is the same as wait unless the task’s
waiting-time exceeds the specified time duration; if the time duration expires, the waiting task is unblocked and a
value of false is returned, otherwise a value of true is returned. (The type uDuration is defined in Section 8.2, p. 113.)
The signal routine checks if there is a waiting task, and if so, unblocks a waiting task from the queue of the condition
lock; waiting tasks are released in FIFO order. The signal routine can be safely called without acquiring any owner
lock associated with tasks waiting on the condition. The broadcast routine is the same as the signal routine, except all
waiting tasks are unblocked.

It is not meaningful to read or to assign to a lock variable, or copy a lock variable (e.g., pass it as a value parameter).

2.15. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 39

2.15.5 Barrier

A barrier allows � tasks to synchronize, possible multiple times, during their life time. Barriers are used to repeatedly
coordinate a group of tasks performing a concurrent operation followed by a sequential operation. In � C++, a barrier
is a mutex coroutine, i.e., _Cormonitor, to provide the necessary mutual exclusion and to allow code to be easily
executed both before and after the � tasks synchronize on the barrier. The type uBarrier defines a barrier:

_Mutex _Coroutine uBarrier {
protected:

void main() {
for (;;) {

suspend();
}

}
public:

uBarrier(unsigned int total);
_Nomutex unsigned int total() const;
_Nomutex unsigned int waiters() const;
void reset(unsigned int total);
void block();
virtual void last() {

resume();
}

};
uBarrier x(10), *y;
y = new uBarrier(20);

The declarations create two barrier variables and initializes the first to work with 10 tasks and the second to work with
20 tasks.

The constructor routine uBarrier has the following form:

uBarrier(unsigned int total) – this form specifies the total number of tasks participating in the synchronization.
Appropriate values are

�
0.

The member routines total and waiters return the total number of tasks participating in the synchronization and the
total number of tasks currently waiting at the barrier, respectively. The member routine reset changes the total number
of tasks participating in the synchronization; no tasks may be waiting in the barrier when the total is changed. block
is called to synchronize with � tasks; tasks block until any � tasks have called block. The virtual member routine
last is called by the last task to synchronize at the barrier. It can be replaced by subclassing from uBarrier to provide a
specific action to be executed when synchronization is complete. This capability is often used to reset a computation
before releasing the tasks from the barrier to start the next computation. The default code for last is to resume the
coroutine main.

The coroutine main is usually replaced by subclassing to supply the code to be executed before and after tasks
synchronize. The general form for a barrier main routine is:

void main() {
for (;;) {

// code executed before synchronization (initialization)
suspend();
// code executed after synchronization (termination)

}
}

Normally, the last action of the constructor for the subclass is resuming, which switches to the coroutine main to
prime the barrier’s initialization. When main suspends back to the constructor, the barrier is initialized and ready to
synchronize the first set of tasks.

It is not meaningful to read or to assign to a barrier variable, or copy a barrier variable (e.g., pass it as a value
parameter).

To use barriers in a � C++ program, include the file:

#include <uBarrier.h>

40 CHAPTER 2. � C++ TRANSLATOR

2.16 User Specified Context
The following facilities allow users to specify additional coroutine and task context to be saved and restored during a
context switch. This facility should only be used to save and restore processor specific data, for example, coprocessor
or graphics hardware data that is specific to each processor’s execution. This facility does not allow a shared resource,
like a single graphics device, to be accessed mutually exclusively by multiple tasks in a multiprocessor environment. In
a multiprocessing environment, tasks executing in parallel corrupt the shared resource because their context switches
overlap. To share a resource in a multiprocessor environment requires proper mutual exclusion, for example, by using a
server task. In a uniprocessor environment, this facility can be used to guarantee mutual exclusion to a shared resource
because only one task is executing at a time so the context of the shared resource is saved and restored on each context
switch. We strongly discourage using this facility for mutual exclusion of a non-processor-specific resource because it
does not scale to the multiprocessor environment.

The user-context facility has two parts: the definition of a context save-area, containing the storage for the context
and routines to save and restore the context, and the declaration and initialization of a context save-area. The associa-
tion of the additional context with a coroutine or task depends on which execution state is active when the declaration
of the context save-area occurs.

A context area must be derived from the abstract class uContext:

class uContext {
public:

uContext();
uContext(void *key);
virtual void save() = 0;
virtual void restore() = 0;

}; // uContext

The overloaded constructor routine uContext has the following forms:

uContext() – creates a context with a unique search key (discussed shortly).

uContext(void *key) – creates a context with the user supplied search key.

Multiple context areas can be declared, and hence, associated with a coroutine or task. However, a context is only
associated with an execution state if its search key is unique. This requirement prevents the same context from being
associated multiple times with a particular coroutine or task.

Figure 2.7 shows how the context of a hardware coprocessor can be saved and restored as part of the context of
task worker. A unique search-key for all instances of CoProcessorCxt is created via the address of the static variable,
uUniqueKey, because the address of a static variable is unique within a program. Therefore, the value assigned to
uUniqueKey is irrelevant, but a value must be assigned in one translation unit for linking purposes. This address is
implicitly stored in each instance of CoProcessorCxt. When a context is added to a task, a search is performed for any
context with the same key. If a context with the same key is found, the new context is not added; otherwise it is added
to the list of user contexts for the task.

�
WARNING: Put no code into routines save and restore that results in a context switch, e.g., printing

using cout or cerr (use printf if necessary). These routines are called during a context switch, and a context
switch cannot be recursively invoked.

�

2.16.1 Predefined Floating-Point Context

In most operating systems, the entire state of the actual processor is saved during a context switch between execution
states because there is no way to determine if a particular object is using only a subset of the actual processor state. All
programs use the fixed-point registers, while only some use the floating-point registers. Because there is a significant
execution cost in saving and restoring the floating-point registers, they are not saved automatically. If a coroutine or
task performs floating-point operations, saving the floating-point registers must become part of the context-switching
action for the execution state of that coroutine or task.

2.16. USER SPECIFIED CONTEXT 41

class CoProcessorCxt : public uContext {
static int uUniqueKey; // unique address across all instances
int reg[3]; // coprocessor has 3 integer registers

public:
CoProcessorCxt() : uContext(&uUniqueKey) {};
void save();
void restore();

};

int CoProcessorCxt::uUniqueKey = 0; // must initialize in one translation unit

void CoProcessor::Save() {
// assembler code to save coprocessor registers into context area

}
void CoProcessor::Restore() {

// assembler code to restore coprocessor registers from context area
}

_Task worker {
. . .
void main() {

CoProcessorCxt cpcxt; // associate additional context with task
. . .

}
. . .

};

Figure 2.7: Saving Co-processor Context

To save and restore the float-point registers on a context switch, declare a single instance of the predefined type
uFloatingPointContext in the scope of the floating-point computations, such as the beginning of the coroutine’s or task’s
main member, e.g.:

_Coroutine C {
void main() {

uFloatingPointContext fpcxt; // the name of the variable is insignificant
. . . // floating-point computations can be performed safely in this scope

}
. . .

};

Once main starts, both the fixed-point and floating-point registers are restored or saved during a context switch to or
from instances of coroutine C.

�
WARNING: The member routines of a coroutine or task are executed using the execution state of the

caller. Therefore, if floating-point operations occur in a member routine, including the constructor, the
caller must also save the floating-point registers. Only a coroutine’s or task’s main routine and the routines
called by main use the coroutine’s or task’s execution state, and therefore, only these routines can safely
perform floating-point operations.

�

�
WARNING: Some processors, like the SPARC, implicitly save both fixed and floating-point reg-

isters, which means it is unnecessary to create instances of uFloatingPointContext in tasks performing
floating-point operations. However, leaving out uFloatingPointContext is dangerous because the pro-
gram is not portable to other processors. Therefore, it is important to always include an instance of
uFloatingPointContext in tasks performing floating-point operations. For processors like the SPARC,
uFloatingPointContext does nothing, so there is no cost.

�

Additional context can be associated with a coroutine or task in a free routine, member routine, or as part of a class
object to temporarily save a particular context. For example, the floating-point registers are saved when an instance of
the following class is declared:

42 CHAPTER 2. � C++ TRANSLATOR

class c {
private:

uFloatingPointContext fpcxt;
public:

void func() {
// perform floating-point computations

}
};

When a coroutine or task declares an instance of c, its context switching is augmented to save the floating-point
registers for the duration of the instance. This capability allows the implementor of c to ensure that the integrity of its
floating-point calculations are not violated by another coroutine or task performing floating-point operations. It also
frees the user from having to know that the floating-point registers must be saved when using class c. Remember, if
the floating-point registers are already being saved, the additional association is ignored because of the unique search
key.

2.17 Implementation Restrictions
The following restrictions are an artifact of this implementation. In some cases the restriction results from the fact that
� C++ is only a translator and not a compiler. In all other cases, the restrictions exist simply because time limitations
on this project have prevented it from being implemented.

� While � C++ has extended C++ with concurrency constructs, it is not a compiler. Therefore, it suffers from the
soundness/efficiency problem related to all concurrency library approaches (see Section 2.13, p. 32). To mitigate
soundness problems, � C++ implicitly turns on or off compiler optimizations known to cause soundness problems.
Unfortunately, turning on these flags affects all variables, and hence, prevents many valid optimizations. Since
it is virtually impossible to determine whether a variable is or is not shared by multiple tasks, it is necessary to
take such Draconian measures to ensure that correct concurrent programs are sound.

� Some runtime member routines are publicly visible when they should not be; therefore, � C++ programs should
not contain variable names that start with a “u” followed by a capital letter. This problem is an artifact of � C++
being a translator.

� By default, � C++ allows at most 128 mutex members because a 128-bit mask is used to test for accepted
member routines. When � C++ is compiled, this value can be modified by setting the preprocessor variable
_ _U_MAXENTRYBITS_ _ .

Unfortunately, bit masks, in general, do not extend to support multiple inheritance. We believe that the perfor-
mance degradation required to support multiple inheritance is unacceptable.

� When defining a derived type from a base type that is a task or coroutine and the base type has default parameters
in its constructor, the default arguments must be explicitly specified if the base constructor is an initializer in the
definition of the constructor of the derived type, e.g.:

_Coroutine Base {
public:

Base(int i, float f = 3.0, char c =
�

c
�

);
};

_Coroutine Derived : public Base {
public:

Derived(int i) : Base(i, 3.0,
�

c
�

); // values 3.0 and
�

c
�

must be specified
};

All other uses of the constructor for Base are not required to specify the default values. This problem is an
artifact of � C++ being a translator.

� Anonymous coroutine and task types are not supported, e.g.:

2.17. IMPLEMENTATION RESTRICTIONS 43

_Task /* no name */ { // must have a name
. . .

} t1, t2, t3;

Both a coroutine and a task must have a constructor and destructor, which can only be created using the name
of the type constructor. Having the translator generate a hidden unique name is problematic because the order
of include files may cause the generation of a different name for different compilations, which plays havoc with
linking because of name mangling.

� There is no discrimination mechanism in the _Accept statement to differentiate among overloaded mutex mem-
ber routines. When time permits, a scheme using a formal declarer in the _Accept statement to disambiguate
overloaded member routines will be implemented, e.g.:

_Accept(mem(int));
else _Accept(mem(float));

Here, the overloaded member routines mem are completely disambiguated by the type of their parameters be-
cause C++ overload resolution does not use the return type.

� A try block surrounding a constructor body is not supported, e.g.:

class T2 : public T1 {
const int i;

public:
T2(); // constructor

};
T2::T2() try : T1(3), i(27) {

// body of constructor
} catch {

// handle exceptions from initialization constructors (e.g., T1)
}

This problem is an artifact of � C++ being a translator.

44 CHAPTER 2. � C++ TRANSLATOR

Chapter 3

Input/Output

A major problem with concurrency and the file system is that, like the compiler, the file system is unaware if a program
is concurrent (see Section 2.13, p. 32). To ensure multiple tasks are not performing I/O operations simultaneously on
the same file descriptor, each � C++ file is implemented as a monitor that provides mutual exclusion on I/O operations.
However, there are more complex issues relating to I/O operations in a concurrent system.

3.1 Nonblocking I/O

For a sequential program performing an I/O operation that cannot proceed immediately, the normal action for the file
system is to block the program until the operation can continue. For example, when a program needs input from the
keyboard, the file system blocks the program until data is entered. This action is correct for a sequential program
because there is no other work for it to do until the new data is supplied by the user. However, this action may be
incorrect for a concurrent program because there may be other work to do even without the user data. Therefore, the
normal action by the file system, called heavy blocking (see Section 7.4.3, p. 110), is usually inappropriate for a con-
current program because it inhibits concurrency. Therefore, I/O operations must be transformed from heavy blocking
to light blocking so that execution of other tasks can continue. This transformation is achieved by nonblocking I/O.
To simplify the complexity of nonblocking I/O, � C++ supplies a nonblocking I/O library.

While I/O operations can be made nonblocking, this requires special action as the nonblocking I/O operations may
not restart automatically when the operation completes. Instead, it may be necessary to poll for I/O completions, which
is done through the select operation in UNIX, while other tasks execute. Only when all tasks on a cluster are directly
or indirectly (light-) blocked, waiting for I/O operations to complete, can the virtual processor be heavy blocked.

This scenario is implemented automatically by � C++ choosing a task performing I/O to poll for completion of
any I/O operation, called the poller task; all other tasks performing I/O are light blocked. When an I/O operation
completes (e.g., a read or write), the task waiting for that operation is unblocked by the poller task. If the poller’s
I/O completes, it unblocks one of the I/O blocked tasks and that task becomes the I/O poller. Only when the poller
detects that no I/O operations have completed and there are no tasks on the cluster to execute (i.e., the cluster’s ready
queue is empty) does the poller perform a heavy block. This scheme allows other tasks to progress with only a slight
degradation in performance due to the polling task.

3.2 C++ Stream I/O

Because a stream may be shared by multiple tasks, characters generated by the insertion operator (<<) and/or the
extraction operator >> in different tasks may be intermixed. For example, if two tasks execute the following:

task � : cout << "abc " << "def " << endl;
task � : cout << "uvw " << "xyz " << endl;

some of the different outputs that can appear are:

45

46 CHAPTER 3. INPUT/OUTPUT

abc def
uvw xyz
uvw abc def
xyz
abc uvw xyz
def
uvw abc xyz def

abuvwc dexfyz

In fact, concurrent operations can even corrupt the internal state of the stream, resulting in failure. As a result, some
form of mutual exclusion is required for concurrent stream access. A coarse-grained solution is to perform all stream
operations (e.g., I/O) via a single task or within a monitor, providing the necessary mutual exclusion for the stream.
A fine-grained solution is to have a lock for each stream, which is acquired and released around stream operations by
each task.

� C++ provides a fine-grained solution where an owner lock is acquired and released indirectly by instantiating
a type that is specific to the kind stream: type isacquire for input streams and type osacquire for output streams.
For the duration of objects of these types on an appropriate stream, that stream’s owner lock is held so I/O for that
stream occurs with mutual exclusion within and across I/O operations performed on the stream. The lock acquire is
performed in the object’s constructor and the release is performed in the destructor. The most common usage is to
create an anonymous object to lock the stream during a single cascaded I/O expression, e.g.:

task � : osacquire(cout) << "abc " << "def " << endl; // anonymous locking object
task � : osacquire(cout) << "uvw " << "xyz " << endl; // anonymous locking object

constraining the output to two different lines in any order:

abc def
uvw xyz

uvw xyz
abc def

The anonymous locking object is only deallocated after the entire cascaded I/O expression is completed, and it then
implicitly releases the stream’s owner lock in its destructor.

Because of the properties of an owner lock, a task can allocate multiple locking objects for a specified stream,
and the stream’s owner lock is only released when the topmost locking object is deallocated. Therefore, multiple I/O
statements can be protected atomically using normal block structure, e.g.:

{ // acquire the lock for stream cout for block duration
osacquire acq(cout); // named stream locker
cout << "abc";
osacquire(cout) << "uvw " << "xyz " << endl; // ok to acquire and release again
cout << "def";

} // implicitly release the lock when “acq” is deallocated

For an fstream, which can perform both input and output, both isacquire and osacquire can be used. The only
restriction is that the kind of stream locker has to match with kind of I/O operation, e.g.:

fstream file("abc");
osacquire(file) << . . . // output operations
. . .
isacquire(file) >> . . . // input operations

For protecting multiple I/O statements on an fstream, either isacquire or osacquire can be used to acquire the stream
lock, e.g.:

fstream file("abc");
{ // acquire the lock for stream file for block duration

osacquire acq(file); // or isacquire acq(file)
file >> . . . // input operations
. . .
file << . . . // output operations

} // implicitly release the lock when “acq” is deallocated

WARNING: Deadlock can occur if routines are called in an I/O sequence that might block, e.g.:

3.3. UNIX FILE I/O 47

osacquire(cout) << "data:" << Monitor.rtn(. . .) << endl;

The problem occurs if the task executing the I/O sequence blocks in the monitor when it is holding the I/O lock for
stream cout. Any other task that attempts to write on cout blocks until the task holding the lock is unblocked and
releases it. This scenario can lead to deadlock if the task that is going to unblock the task waiting in the monitor first
writes to cout. One simple precaution is to factor the call to the monitor routine out of the I/O sequence, e.g.:

int data = Monitor.rtn(. . .);
osacquire(cout) << "data:" << data << endl;

3.3 UNIX File I/O

The following interface is provided to use UNIX files. A file is a passive object that has information written into and
read from it by tasks; therefore, a file is like a monitor, which provides indirect communication among tasks. The
difference between a file and a monitor is that the file is on secondary storage, and hence, is not directly accessible by
the computer’s processors; a file must be made explicitly accessible before it can be used in a program. Furthermore,
a file may have multiple accessors—although it is up to UNIX to interpret the meaning of these potentially concurrent
accessors—so there is a many-to-one relationship between a file and its accessors. This relationship is represented in
a � C++ program by a declaration for a file and subsequent declarations for each accessor.

Traditionally, access to a file is explicit and is achieved procedurally by a call to “open” and a subsequent call
to “close” to terminate the access. In � C++, the declaration of a special access object performs the equivalent of the
traditional open and its deallocation performs the equivalent of the traditional close. In many cases, the access object
is a local variable so that the duration of access is tied to the duration of its containing block. However, by dynamically
allocating an access object and passing its pointer to other blocks, the equivalent access duration provided by traditional
“open” and “close” can be achieved.

In � C++, a connection to a UNIX file is made by declaration of a uFile object, e.g.:

uFile infile("abc"), outfile("xyz");

which creates two connection variables, infile and outfile, connected to UNIX files abc and xyz, respectively. The
operations available on a file object are:

class uFile {
public:

uFile(const char *name);
~uFile();

const char *getName() const;
void status(struct stat &buf);

_DualEvent Failure;
_DualEvent TerminateFailure;
_DualEvent StatusFailure;

}; // uFile

The parameters for the first and second constructors of uFile are as follows. The name parameter is the UNIX name of
the file, which is connected to the program. The destructor of uFile checks if there are any registered accessors using
the file, and raises the exception TerminateFailure if there are.

It is not meaningful to read or to assign to a uFile object, or copy a uFile object (e.g., pass it as a value parameter).
The member routine getName returns the string name associated with a file.
The parameter for member routine status is explained in the UNIX manual entry for stat. (The first parameter to

the UNIX stat routine is unnecessary, as it is provided implicitly by the uFile object.) Because a file object is still
inaccessible after a connection is made, there are no member routines to access its contents.

To use the interface, include the file:

#include <uFile.h>

at the beginning of each source file. uFile.h also includes the following UNIX system file: <fcntl.h>

48 CHAPTER 3. INPUT/OUTPUT

class uFileAccess {
public:

uFileAccess(uFile &f, int flags, int mode = 0644);
~uFileAccess();

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
off_ t lseek(off_ t offset, int whence);
int fsync();
int fd();

_DualEvent Failure;
_DualEvent OpenFailure;
_DualEvent CloseFailure;
_DualEvent SeekFailure;
_DualEvent SyncFailure;
_DualEvent ReadFailure;
_DualEvent ReadTimeout;
_DualEvent WriteFailure;
_DualEvent WriteTimeout;

}; // uFileAccess

Figure 3.1: uFileAccess Interface

3.3.1 File Access

Once a connection is made to a UNIX file, its contents can be accessed by declaration of a uFileAccess object, e.g.:

uFileAccess input(infile, O_RDONLY), output(outfile, O_CREAT | O_WRONLY);

which creates one access object to read from the connection to file abc and one object to write to the connection made
to file xyz. The operations available on an access object are listed in Figure 3.1:

The parameters for the constructor uFileAccess are as follows. The f parameter is a uFile object to be opened
for access. The flags and mode parameters are explained in the UNIX manual entry for open. The destructor of
uFileAccess terminates access to the file and deregisters with the associated uFile object.

It is not meaningful to read or to assign to a uFileAccess object, or copy a uFileAccess object (e.g., pass it as a
value parameter).

The parameters and return value for member routines read, readv, write, writev, lseek and fsync are explained
in their corresponding UNIX manual entries. (The first parameter to these UNIX routines is unnecessary, as it is
provided implicitly by the uFileAccess object.) The only exception is the optional parameter timeout, which points
to a maximum waiting time for completion of the I/O operation before aborting the operation by raising an exception
(see Section 8.3.2, p. 116). (The type uDuration is defined in Section 8.2, p. 113.) Appendix C.4, p. 150 shows reading
and writing to UNIX files.

The member routine fd returns the file descriptor for the open UNIX file.

3.4 BSD Sockets
The following interface is provided to use BSD sockets. A socket is an end point for communicating among tasks in
different processes, possibly on different computers. A socket endpoint is accessed in one of two ways:

1. as a client, which is one-to-many for connectionless communication with multiple server socket-endpoints, or
one to one for peer-connection communication with a server’s acceptor socket-endpoint.

2. as a server, which is one-to-many for connectionless communication with multiple client socket-endpoints, or
one to one for peer-connection communication with a server’s acceptor socket-endpoint.

The relationship between connectionless and peer-connection communication is shown in Figures 3.2 and 3.3. For
connectionless communication (see Figure 3.2), any of the client socket-endpoints can communicate with any of the

3.4. BSD SOCKETS 49

client �client �

server �S

server �S

server �S

S

client �

S

process

process

server �

server �

process

process

client �
process

client �

socket endpointS

Sclient �

S

client �

Figure 3.2: Client/Server Connectionless

client �

Sclients �

Sclient �

Sclient �

Sclients �

client �

acceptor descriptorAsocket endpointS

process
server �

acceptor �

process
server �acceptor �

acceptor �

process
client �

process

process

S
A

A

A acceptor �

S

A

Figure 3.3: Client/Server Peer Connected

server socket-endpoints, and vice versa, as long as the other’s address is known. This flexibility is possible because
each communicated message contains the address of the sender or receiver; the network then routes the message to this
address. For convenience, when a message arrives at a receiver, the sender’s address replaces the receiver’s address,
so the receiver can reply back. For peer-connection communication (see Figure 3.3), a client socket-endpoint can
only communicate with the server socket-endpoint it has connected to, and vice versa. The dashed lines show the
connection of the client and server. The dotted lines show the creation of an acceptor to service the connection for peer
communication. The solid lines show the bidirectional communication among the client and server’s acceptor. Since
a specific connection is established between a client and server socket-endpoints, messages do not contain sender
and receive addresses, as these addresses are implicitly known through the connection. Notice there are fewer socket
endpoints in the peer-connection communication versus the connectionless communication, but more acceptors. For
connectionless communication, a single socket-endpoint sequentially handles both the connection and the transfer
of data for each message. For peer-connection communication, a single socket-endpoint handles connections and an
acceptor transfers data in parallel. In general, peer-connection communication is more expensive (unless large amounts
of data are transferred) but more reliable than connectionless communication.

50 CHAPTER 3. INPUT/OUTPUT

A server socket has a name, either a character string for UNIX pipes or port-number/machine-address for an INET
address, that clients must know to communicate. For connectionless communication, the server usually has a reader
task that receives messages containing the client’s address. The message can be processed by the reader task or given to
a worker task to process, which subsequently returns a reply using the client’s address present in the received message.
For peer-connection communication, the server usually has one task in a loop accepting connections from clients, and
each acceptance creates an acceptor task. The acceptor task receives messages from only one client socket-endpoint,
processes the message and subsequently returns a reply, in parallel with accepting clients. Since the acceptor and
client are connected, communicated messages do not contain client addresses. These relationships are represented in
a � C++ program by declarations of client, server and acceptor objects, respectively.

The � C++ socket interface provides a convenience feature for connectionless communication to help manage the
addresses where messages are sent. It is often the case that a client only sends messages from its client socket-endpoint
to a single server socket-endpoint or sends a large number of messages to a particular server socket-endpoint. In these
cases, the address of the server remains constant for a long period of time. To mitigate having to specify the server
address on each call for a message send, the client socket-endpoint remembers the last server address it receives a
message from, and there is a short form of send that uses this remembered address. The initial remembered (default)
address can be set when the client socket-endpoint is created or set/reset at any time during its life-time. A similar
convenience feature exists for the server socket-endpoint, where the last client address it receives a message from is
remembered and can be implicitly used to send a message directly back to that client.

To use the interface in a � C++ program, include the file:

#include <uSocket.h>

at the beginning of each source file. uSocket.h also includes the following UNIX system files: <sys/fcntl.h>,
<sys/types.h>, <sys/socket.h>,<sys/un.h>, <netdb.h>.

3.4.1 Client

In � C++, a client, its socket endpoint, and possibly a connection to a server are created by declaration of a uSocketClient
object, e.g.:

uSocketClient client("abc");

which creates a client variable, client, connected to the UNIX server socket, abc. The operations provided by
uSocketClient are listed in Figure 3.4:

The first two constructors of uSocketClient are for use with the UNIX address family. The parameters for the
constructors are as follows. The name parameter is the name of an existing UNIX stream that the client is connecting
to. The name parameter can be NULL for type SOCK_DGRAM, if there is no initial server address. The optional default
type and protocol parameters are explained in the UNIX manual entry for socket. Only types SOCK_STREAM and
SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communication type
(usually 0). The optional timeout parameter is a pointer to a maximum waiting time for completion of a connection for
type SOCK_STREAM before aborting the operation by raising an exception (see Section 8.3.2, p. 116); this parameter
is only applicable for peer-connection, SOCK_STREAM, communication.

The next two constructors of uSocketClient are for use with the INET address family on a local host. The param-
eters for the constructors are as follows. The port parameter is the port number of an INET port on the local host
machine. The optional default type and protocol parameters are explained in the UNIX manual entry for socket. Only
types SOCK_STREAM and SOCK_DGRAM communication can be specified, and any protocol appropriate for the
specified communication type (usually 0). The optional parameter timeout is a pointer to a maximum waiting time
for completion of a connection for type SOCK_STREAM before aborting the operation by raising an exception; this
parameter is only applicable for peer-connection, SOCK_STREAM, communication.

The last two constructors of uSocketClient are for use with the INET address family on a nonlocal host. All
parameters are the same as for the local host case, except the nonlocal host machine-name is specified by the name
parameter.

The destructor of uSocketClient terminates the socket (close) and removes any temporary files created implicitly
for SOCK_STREAM and SOCK_DGRAM communication.

It is not meaningful to read or to assign to a uSocketClient object, or copy a uSocketClient object (e.g., pass it as a
value parameter).

3.4. BSD SOCKETS 51

_Monitor uSocketClient {
public:

// AF_UNIX
uSocketClient(const char *name, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(const char *name, uDuration *timeout, int type = SOCK_STREAM, int protocol = 0);
// AF_INET, local host
uSocketClient(unsigned short port, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(unsigned short port, uDuration *timeout, int type = SOCK_STREAM, int protocol = 0);
// AF_INET, other host
uSocketClient(unsigned short port, const char *name, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(unsigned short port, const char *name, uDuration *timeout, int type = SOCK_STREAM,

int protocol = 0);
~uSocketClient();

void setServer(struct sockaddr *addr, int len);
void getServer(struct sockaddr *addr, socklen_t *len);

const struct sockaddr *getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr *name, socklen_t *len);
int getpeername(struct sockaddr *name, socklen_t *len);

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
int send(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, struct sockaddr *to, socklen_t tolen, int flags = 0, uDuration *timeout = NULL);
int sendmsg(const struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int recv(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, struct sockaddr *from, socklen_t *fromlen, int flags = 0,

uDuration *timeout = NULL);
int recvmsg(struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int fd();

_DualEvent Failure;
_DualEvent OpenFailure;
_DualEvent uOpenTimeout;
_DualEvent CloseFailure;
_DualEvent ReadFailure;
_DualEvent ReadTimeout;
_DualEvent WriteFailure;
_DualEvent WriteTimeout;

};

Figure 3.4: uSocketClient Interface

52 CHAPTER 3. INPUT/OUTPUT

The member routine setServer changes the address of the default server for the short forms of sendto and recvfrom.
The member routine getServer returns the address of the default server.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,
with the following exceptions:

� getpeername is only applicable for connected sockets.

� The first parameter to these UNIX routines is unnecessary, as it is provided implicitly by the uSocketClient
object

� The lack of address for the overloaded member routines sendto and recvfrom.

The client implicitly remembers the address of the initial connection and each recvfrom call. Therefore, no
address needs to be specified in the sendto, as the data is sent directly back to the last address received. If
a client needs to communicate with multiple servers, explicit addresses can be specified in both sendto and
recvfrom.

This capability eliminates the need to connect datagram sockets to use the short communication forms send
and recv, using the connected address. In general, connected datagram sockets have the same efficiency as
unconnected ones, but preclude specific addressing via sendto and recvfrom. The above scheme provides the
effect of a connected socket while still allowing specific addressing if required.

� The optional parameter timeout, which points to a maximum waiting time for completion of the I/O operation
before aborting the operation by raising an exception

The member routine fd returns the file descriptor for the client socket.
Appendix C.5.1, p. 152 shows a client communicating with a server using a UNIX socket and datagram messages.

Appendix C.5.3, p. 154 shows a client connecting to a server using an INET socket and stream communication with
an acceptor.

3.4.2 Server

In � C++, a server, its socket endpoint, and possibly a connection to a client are created by declaration of a
uSocketServer object, e.g.:

uSocketServer server("abc");

which creates a server variable, server, and a UNIX server socket endpoint, abc. The operations provided by
uSocketServer are listed in Figure 3.5:

The first constructor of uSocketServer is for use with the UNIX address family. The parameters for the con-
structors are as follows. The name parameter is the name of a new UNIX server socket that the server is creating.
The optional default type and protocol parameters are explained in the UNIX manual entry for socket. Only types
SOCK_STREAM and SOCK_DGRAM communication can be specified, and any protocol appropriate for the spec-
ified communication type (usually 0). The optional default backlog parameters is explained in the UNIX manual
entry for listen; it specifies a limit on the number of incoming connections from clients and is only applicable for
peer-connection, SOCK_STREAM, communication.

The next two constructors of uSocketServer are for use with the INET address family on a local host. The pa-
rameters for the constructors are as follows. The port parameter is the port number of an INET port on the local host
machine, or a pointer to a location where a free port number, selected by the UNIX system, is placed. The optional
default type and protocol parameters are explained in the UNIX manual entry for socket. Only types SOCK_STREAM
and SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communica-
tion type (usually 0). The optional default backlog parameters is explained in the UNIX manual entry for listen;
it specifies a limit on the number of incoming connections from clients and is only applicable for peer-connection,
SOCK_STREAM, communication.

The destructor of uSocketServer terminates the socket (close) and checks if there are any registered accessors
using the server, and raises the exception CloseFailure if there are.

It is not meaningful to read or to assign to a uSocketServer object, or copy a uSocketServer object (e.g., pass it as
a value parameter).

3.4. BSD SOCKETS 53

_Monitor uSocketServer {
public:

// AF_UNIX
uSocketServer(const char *name, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
// AF_INET, local host
uSocketServer(unsigned short port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
uSocketServer(unsigned short *port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
~uSocketServer();

void setClient(struct sockaddr *addr, int len);
void getClient(struct sockaddr *addr, socklen_t *len);

const struct sockaddr *getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr *name, socklen_t *len);
int getpeername(struct sockaddr *name, socklen_t *len);

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
int send(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, struct sockaddr *to, socklen_t tolen, int flags = 0, uDuration *timeout = NULL);
int sendmsg(const struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int recv(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, struct sockaddr *from, socklen_t *fromlen, int flags = 0,

uDuration *timeout = NULL);
int recvmsg(struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int fd();

_DualEvent Failure;
_DualEvent OpenFailure;
_DualEvent CloseFailure;
_DualEvent ReadFailure;
_DualEvent ReadTimeout;
_DualEvent WriteFailure;
_DualEvent WriteTimeout;

};

Figure 3.5: uSocketServer Interface

The member routine setClient changes the address of the default client for the short forms of sendto and recvfrom.
The member routine getClient returns the address of the default client.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,
with the following exceptions:

� getpeername is only applicable for connected sockets.

� The first parameter to these UNIX routines is unnecessary, as it is provided implicitly by the uSocketClient
object

� The lack of address for the overloaded member routines sendto and recvfrom.

The server implicitly remembers the address of the initial connection and each recvfrom call. Therefore, no
address needs to be specified in the sendto, as the data is sent directly back to the last address received. If a
server needs to communicate with multiple clients without responding back immediately to each request, explicit
addresses can be specified in both sendto and recvfrom.

54 CHAPTER 3. INPUT/OUTPUT

This capability eliminates the need to connect datagram sockets to use the short communication forms send
and recv, using the connected address. In general, connected datagram sockets have the same efficiency as
unconnected ones, but preclude specific addressing via sendto and recvfrom. The above scheme provides the
effect of a connected socket while still allowing specific addressing if required.

� The optional parameter timeout, which points to a maximum waiting time for completion of the I/O operation
before aborting the operation by raising an exception (see Section 8.3.2, p. 116)

The member routine fd returns the file descriptor for the server socket.
Appendix C.5.2, p. 153 shows a server communicating with multiple clients using a UNIX socket and datagram

messages. Appendix C.5.4, p. 156 shows a server communicating with multiple clients using an INET socket and
stream communication with an acceptor.

3.4.3 Server Acceptor

After a server socket is created for peer-connection communication, it is possible to accept connections from clients
by declaration of a uSocketAccept object, e.g.:

uSocketAccept acceptor(server);

which creates an acceptor object, acceptor, that blocks until a client connects to the UNIX socket, abc, represented by
server object server. The operations provided by uSocketAccept are listed in Figure 3.6:

The parameters for the constructors of uSocketAccept are as follows. The s parameter is a uSocketServer object
through which a connection to a client is made. The optional default adr and len parameters, are explained in the
UNIX manual entry for accept, and are used to determine information about the client the acceptor is connected
to. The optional timeout parameter is a pointer to a maximum waiting time for completion of the connection before
aborting the operation by raising an exception (see Section 8.3.2, p. 116). The optional doAccept parameter is a
boolean where true means do an initial accept during initialization of the acceptor and false means do not do an initial
accept. If the doAccept parameter is not specified, its value is true.

The destructor of uSocketAccept terminates access to the socket (close) and deregisters with the associated
uSocketServer object.

It is not meaningful to read or to assign to a uSocketAccept object, or copy a uSocketAccept object (e.g., pass it as
a value parameter).

The member routine accept closes any existing connection to a client, and accepts a new connection with a client.
This routine uses the default values adr, len and timeout as specified to the uSocketAccept constructor for the new
connection, unless the optional timeout parameter is specified, which is used for the current accept and replaces the
default timeout for subsequent accepts. The member routine close closes any existing connection to a client.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,
with the following exceptions:

� The first parameter to these UNIX routines is unnecessary, as it is provided implicitly by the uSocketClient
object

� The optional parameter timeout, which points to a maximum waiting time for completion of the I/O operation
before aborting the operation by raising an exception (see Section 8.3.2, p. 116)

The member routine fd returns the file descriptor for the accepted socket.

� � C++ does not support out-of-band data on sockets. Out-of-band data requires the ability to install a
signal handler (see Section 3.1, p. 45). Currently, there is no facility to do this.

�

3.4. BSD SOCKETS 55

_Monitor uSocketAccept {
public:

uSocketAccept(uSocketServer &s, struct sockaddr *adr = NULL, socklen_t *len = NULL);
uSocketAccept(uSocketServer &s, uDuration *timeout, struct sockaddr *adr = NULL, socklen_t *len = NULL);
uSocketAccept(uSocketServer &s, bool doAccept, struct sockaddr *adr = NULL, socklen_t *len = NULL);
uSocketAccept(uSocketServer &s, uDuration *timeout, bool doAccept, struct sockaddr *adr = NULL,

socklen_t *len = NULL);
~uSocketAccept();

void accept();
void accept(uDuration *timeout);
void close();

_Mutex const struct sockaddr *getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
_Mutex int getsockname(struct sockaddr *name, socklen_t *len);
_Mutex int getpeername(struct sockaddr *name, socklen_t *len);

int read(char *buf, int len, uDuration *timeout = NULL);
int readv(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
_Mutex int write(char *buf, int len, uDuration *timeout = NULL);
int writev(const struct iovec *iov, int iovcnt, uDuration *timeout = NULL);
int send(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int sendto(char *buf, int len, struct sockaddr *to, socklen_t tolen, int flags = 0, uDuration *timeout = NULL);
int sendmsg(const struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int recv(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, int flags = 0, uDuration *timeout = NULL);
int recvfrom(char *buf, int len, struct sockaddr *from, socklen_t *fromlen, int flags = 0,

uDuration *timeout = NULL);
int recvmsg(struct msghdr *msg, int flags = 0, uDuration *timeout = NULL);
int fd();

_DualEvent Failure;
_DualEvent OpenFailure;
_DualEvent uOpenTimeout;
_DualEvent CloseFailure;
_DualEvent ReadFailure;
_DualEvent ReadTimeout;
_DualEvent WriteFailure;
_DualEvent WriteTimeout;

};

Figure 3.6: uSocketAccept Interface

56 CHAPTER 3. INPUT/OUTPUT

Chapter 4

Exceptions

C++ has an exception handling mechanism (EHM) based on throwing and catching in sequential programs; however,
this mechanism does not extend to a complex execution-environment. The reason is that the C++ EHM only deals
with a single raise-mechanism and a simple execution-environment, i.e., throwing and one stack. The � C++ execution
environment is more complex, and hence, it provides additional raising-mechanisms and handles multiple execution-
states (multiple stacks). These enhancements require additional language semantics and constructs; therefore, the
EHM in � C++ is a superset of that in C++, providing more advanced exception semantics. As well, with hindsight,
some of the poorer features of C++’s EHM are replaced by better mechanisms.

4.1 EHM
An exceptional event is an event that is (usually) known to exist but which is ancillary to an algorithm, i.e., an
exceptional event usually occurs with low frequency. Some examples of exceptional events are division by zero, I/O
failure, end of file, pop from an empty stack, inverse of a singular matrix. Often an exceptional event occurs when an
operation cannot perform its desired computation (Eiffel’s notion of contract failure [Mey92, p. 395]). While errors
occur infrequently, and hence, are often considered an exceptional event, it is incorrect to associate exceptions solely
with errors; exceptions can be a standard part of a regular algorithm.

An exceptional event is often represented in a programming language by a type name, called an exception type.
An exception is an instance of an exception type, which is used in a special operation, called raising, indicating an
ancillary (exceptional) situation. Raising results in an exceptional change of control flow in the normal computation
of an operation, i.e., control propagates immediately to a dynamically specified handler. To be useful, the handler
location must be dynamically determined, as opposed to statically determined; otherwise, the same action and context
for that action is executed for every exceptional change.

Two actions can sensibly be taken for an exceptional event:

1. The operation can fail requiring termination of the expression, statement or block from which the operation is
invoked. In this case, if the handler completes, control flow continues after the handler, and the handler acts as
an alternative computation for the incomplete operation.

2. The operation can fail requiring a corrective action before resumption of the expression, statement or block
from which the operation is invoked. In this case, if the handler completes, control flow returns to the operation,
and the handler acts as a corrective computation for the incomplete operation.

Both kinds of actions are supported in � C++. Thus, there are two possible outcomes of an operation: normal completion
possibly with a correction action, or failure with change in control flow and alternate computation.

�
Even with the availability of modern EHMs, the common programming techniques often used to

handle exceptional events are return codes and status flags (although this is slowly changing). The return
code technique requires each routine to return a correctness value on completion, where different values
indicate a normal or exceptional result during a routine’s execution. Alternatively, or in conjunction with
return codes, is the status flag technique requiring each routine to set a shared variable on completion,

57

58 CHAPTER 4. EXCEPTIONS

where different values indicate a normal or exceptional result during a routine’s execution, e.g., errno in
UNIX systems. The status value remains as long as it is not overwritten by another routine.

�

4.2 � C++ EHM
The following features characterize the � C++ EHM, and differentiate it from the C++ EHM:

� � C++ supports three different kinds of exception types: throw, resume and dual; C++ only supports throw
exception-types. Each kind of � C++ exception-type has its own hierarchy. Like C++, these hierarchies are built
by publicly inheriting from another exception type of the same kind, and exception parameters are encapsulated
inside an exception. � C++ also extends the C++ set of predefined exception-types1 covering � C++ exceptional
runtime and I/O events.

� � C++ restricts raising of exceptions to specific exception-types; C++ allows any instantiable type to be raised.

� � C++ supports two forms of raising: throwing and resuming; C++ only supports throwing. Throw exception-
types can only be thrown, resume exception-types can only be resumed, and dual exception-types can be either
thrown or resumed. � C++ adopts a propagation mechanism eliminating recursive resuming (see Section 4.5.2.1,
p. 66), even for concurrent exceptions. Essentially, � C++ follows a common rule for throwing and resuming:
between a raise and its handler, each handler is eligible only once.

� � C++ supports two kinds of handlers: termination and resumption; C++ only supports termination handlers.
Unfortunately, resumption handlers must be simulated using routines/functors due to the lack of nested routines
in C++.

� � C++ supports raising of nonlocal and concurrent exceptions so that exceptions can be used to affect control
flow among coroutines and tasks. A nonlocal exception occurs when the raising and handling execution-states
are different, and control flow is sequential, i.e., the thread raising the exception is also the thread handling the
exception. A concurrent exception also has different raising and handling execution-states (hence, concurrent
exceptions are also nonlocal), but control flow is concurrent, i.e., the thread raising the exception is different from
the thread handling the exception. The � C++ kernel implicitly polls for both kinds of exceptions at the soonest
possible opportunity. It is also possible to (hierarchically) block these kinds of exceptions when delivery would
be inappropriate or erroneous.

4.3 Exception Type
� C++ supports the following kinds of exception types: throw, resume and dual. A throw exception-type supports termi-
nation, a resume exception-type supports resumption, a dual exception-type supports both termination and resumption.

While C++ allows any type to be used as an exception type, � C++ restricts exception types to those types defined
by three kinds of classes: _ThrowEvent, _ResumeEvent and _DualEvent. An exception type has all the properties
of a class, and its general form is:

_DualEvent exception-type name { // or _ThrowEvent or _ResumeEvent
. . .

};

As well, every exception type must have a public default and copy constructor.
�

Because C++ allows any type to be used as an exception type, it seems to provide additional generality,
i.e., there is no special exception type in the language. However, in practice, this generality is almost
never used. First, using a builtin type like int as an exception type is dangerous because the type has no
inherent meaning for any exceptional event. That is, one library routine can raise int to mean one thing and
another routine can raise int to mean another; a handler catching int may have no idea about the meaning
of the exception. To prevent this ambiguity, programmers create specific types describing the exception,
e.g., overflow, underflow, etc. Second, these specific exception types can very rarely be used in normal
computations, so the sole purpose of these types is for raising unambiguous exceptions. In essence, C++
programmers ignore the generality available in the language and follow a convention of creating explicit
exception-types. This practice is codified in � C++.

�

1std::bad_alloc, std::bad_cast, std::bad_typeid, std::bad_exception, std::basic_ios::failure, etc.

4.3. EXCEPTION TYPE 59

4.3.1 Creation and Destruction

An exception is the same as a class object with respect to creation and destruction:

_DualEvent D { . . . };
D d; // local exception
_Resume d;
D *dp = new D; // dynamic exception
_Resume *dp;
delete dp;
_Throw D(); // temporary local exception

4.3.2 Inherited Members

Each exception type, if not derived from another exception type, is implicitly derived from one of the following types,
depending on the kind of exception type:

_DualEvent exception-type name : public uEHM::uDualClass . . .
_ThrowEvent exception-type name : public uEHM::uThrowClass . . .
_ResumeEvent exception-type name : public uEHM::uResumeClass . . .

where the interface for the base classes are as follows:

class uEHM::uDualClass {
uDualClass(const char *const msg = "");
const char *const message() const;
const uBaseCoroutine &source() const;
const char *const sourceName() const;

virtual uDualClass *duplicate() const;
virtual void defaultTerminate() const;
virtual void defaultTerminate();
virtual void defaultResume() const;
virtual void defaultResume();

};
class uEHM::uThrowClass : private uEHM::uDualClass {

uThrowClass(const char *const msg = "");
const char *const message() const;
const uBaseCoroutine &source() const;
const char *const sourceName() const;

virtual uDualClass *duplicate() const;
virtual void defaultTerminate() const;
virtual void defaultTerminate();

};
class uEHM::uResumeClass : private uEHM::uDualClass {

uResumeClass(const char *const msg = "");
const char *const message() const;
const uBaseCoroutine &source() const;
const char *const sourceName() const;

virtual uDualClass *duplicate() const;
virtual void defaultResume() const;
virtual void defaultResume();

};

Only the base class uEHM::uDualClass is discussed as the other two exception types are subsets.
The constructor routine uDualClass has the following form:

uDualClass(const char *const msg = "") – creates a dual exception with specified message, which is printed
in an error message if the exception is not handled. The message is copied when an exception is created so it
is safe to use within an exception even if the context of the raise is deleted.

The member routine message returns the string message associated with an exception. The member routine source
returns the coroutine/task that raised the exception; if the exception has been raised locally, the value NULL is returned.

60 CHAPTER 4. EXCEPTIONS

In some cases, the coroutine or task may be deleted when the exception is caught so this reference may be undefined.
The member routine sourceName returns the name of the coroutine/task that raised the exception; if the exception has
been raised locally, the value "*unknown*" is returned. This name is copied from the raising coroutine/task when
an exception is created so it is safe to use even if the coroutine/task is deleted. The member routine duplicate returns
a copy of the raised exception, which can be used to raise the same exception in a different context after it has been
caught; the copy is allocated on the heap, so it is the responsibility of the caller to delete the exception.

The member routine defaultResume is implicitly called if an exception is resumed but not handled; the default
action is to throw the exception, which begins the search for a termination handler from the point of the initial resume
for a dual exception-type, or calls uAbort to terminate the program with the supplied message for a resume exception-
type. The member routine defaultTerminate is implicitly called if an exception is thrown but not handled; the default
action is to call uAbort to terminate the program with the supplied message. In both cases, a user-defined default
action may be implemented by overriding the appropriate virtual member. Both const and non-const versions of
these members are provided so an appropriate one is available within a handler if an exception is caught with or
without a const qualifier.

4.4 Raising
There are two raising mechanisms: throwing and resuming; furthermore, each kind of raising can be done nonlocally
or concurrently. The kind of raising for an exception is specified by the raising statements:

_Throw [throwable-exception] [_At uBaseCoroutine-id] ;
_Resume [resumable-exception] [_At uBaseCoroutine-id] ;

If _Throw has no throwable-exception, it is a rethrow, meaning the currently thrown exception continues propagation.
If there is no current thrown exception but there is a currently resumed dual-exception, the dual exception is thrown.
Otherwise, the rethrow results in a runtime error. If _Resume has no resumable-exception, it is a reraise, meaning the
currently resumed exception continues propagation. If there is no current resumed exception but there is a currently
thrown dual-exception, the dual exception is resumed. Otherwise, the reraise results in a runtime error. The optional
_At clause allows the specified exception or the currently propagating exception (rethrow/reraise) to be raised at
another coroutine or task. The kind of exception type (throw, resume, dual) must match with the kind of raise, i.e.,
_Throw or _Resume.

Exceptions in � C++ are propagated differently from C++. In C++, the throw statement initializes a temporary object,
the type of which is determined from the static type of the operand, and propagates the temporary object. In � C++, the
_Throw and _Resume statements throw the actual operand. For example:

C++ � C++

class B {};
class D : public B {};
void f(B &t) {

throw t;
}
D m;
f(m);

_ThrowEvent B {};
_ThrowEvent D : public B {};
void f(B &t) {

_Throw t;
}
D m;
f(m);

in the C++ program, routine f is passed an object of derived type D but throws an object of base type B, because the static
type of the operand for throw, t, is of type B. However, in the � C++ program, routine f is passed an object of derived
type D and throws the original object of type D. This change makes a significant difference in the organization of
handlers for dealing with exceptions by allowing handlers to catch the specific rather than the general exception-type.

�
Note, when subclassing is used, it is better to catch an exception by reference for termination and

resumption handlers. Otherwise, the exception is truncated from the actual type to the static type speci-
fied at the handler, and cannot be dynamically down-cast to the actual type. Notice, catching-exception
truncation is different from propagation-exception truncation, which does not occur in � C++.

�

4.4.1 Nonlocal Propagation

A local exception within a coroutine behaves like an exception within a routine or class, with one difference. An
exception raised and not handled inside a coroutine terminates it and implicitly raises a nonlocal exception of type

4.4. RAISING 61

uBaseCoroutine::UnHandledException at the coroutine’s last resumer rather than performing the default action of
aborting the program. For example, in:

_ThrowEvent E {};

_Coroutine C {
void main() { _Throw E(); }

public:
void mem() { resume(); }

};
void uMain::main() {

C c;
c.mem(); // first call fails

}

the call to c.mem resumes coroutine c, and then inside c.main an exception is raised that is not handled locally by
c. When the exception of type E reaches the top of c’s stack without finding an appropriate handler, coroutine c is
terminated and the nonlocal exception of type uBaseCoroutine::UnHandledException is implicitly raised at uMain,
since it is c’s last resumer. This semantics reflects the fact that the last resumer is most capable of understanding and
reacting to a failure of the operation it just invoked. Furthermore, the last resumer (coroutine or task) is guaranteed to
be restartable because it became inactive when it did the last resume. Finally, when the last resumer is restarted, the
implicitly raised nonlocal exception is immediately delivered because the context switch back to it implicitly enables
uBaseCoroutine::UnHandledException, which triggers the propagation of the exception.

A nonlocal exception can be used to affect control flow with respect to sequential execution among coroutines.
That is, a source execution raises an exception at a faulting execution; propagation occurs in the faulting execution.
The faulting execution polls at certain points to check for pending nonlocal-exceptions; when nonlocal exceptions are
present, the oldest matching exception is propagated (FIFO service) as if it had been raised locally at the point of the
poll. Nonlocal exceptions among coroutines are possible because each coroutine has its own execution-state (stack).
For example, in Figure 4.1 coroutine c loops until a nonlocal Done exception is raised at it by uMain. Since coroutine
control-flow is sequential, the exception type Done is not propagated immediately. In fact, the exception can only
be propagated the next time coroutine c becomes active. Hence, uMain must make a call to c.mem so mem resumes
c and the pending exception is propagated. If multiple nonlocal-exceptions are raised at a coroutine, the exceptions
are delivered serially but only when the coroutine becomes active. Note, nonlocal exceptions are initially turned off
for a coroutine, so handlers can be set up before any nonlocal exception can be propagated. Propagation of nonlocal
exceptions is turned on via the _Enable statement (see Section 4.4.2).

4.4.2 Enabling/Disabling Propagation

� C++ allows dynamic enabling and disabling of nonlocal exception-propagation. The constructs for controlling prop-
agation of nonlocal exceptions are the _Enable and the _Disable blocks, e.g.:

_Enable <E1> <E2> . . . { _Disable <E1> <E2> . . . {
// code in enable block // code in disable block

} }

The arguments in angle brackets for the _Enable or _Disable block specify the exception types allowed to be prop-
agated or postponed, respectively. Specifying no exception types is shorthand for specifying all exception types.
Though a nonlocal exception being propagated may match with more than one exception type specified in the _Enable
or _Disable block due to exception inheritance (see Sections 4.3.2, p. 59 and 4.7, p. 70), it is unnecessary to define a
precise matching scheme because the exception type is either enabled or disabled regardless of which exception type
it matches with.

_Enable and _Disable blocks can be nested, turning propagation on/off on entry and reestablishing the delivery
state to its prior value on exit. Upon entry of a _Enable block, exceptions of the specified types can be propagated,
even if the exception types were previously disabled. Similarly, upon entry to a _Disable block, exceptions of the
specified types become disabled, even if the exception types were previously enabled. Upon exiting a _Enable or
_Disable block, the propagation of exceptions of the specified types are restored to their state prior to entering the
block.

62 CHAPTER 4. EXCEPTIONS

_ThrowEvent Done {};

_Coroutine C {
void main() {

try {
_Enable { // allow nonlocal exceptions

for (;;) {
. . . suspend(); . . .

}
}

} catch(Done) { . . . }
}

public:
void mem() { resume(); }

};

void uMain::main() {
C c;
for (int i = 0; i < 5; i += 1) c.mem();
_Throw Done() _At c; // deliver nonlocal exception
c.mem(); // trigger pending exception

}

Figure 4.1: Nonlocal Propagation

Initially, nonlocal propagation is disabled for all exception types in a coroutine or task, so handlers can be set up
before any nonlocal exceptions can be propagated, resulting in the following � C++ idiom in a coroutine or task main:

void main() {
// initialization, nonlocal exceptions disabled
try { // setup handlers for nonlocal exceptions

_Enable { // enable propagation of all nonlocal exception-types
// rest of the code for this coroutine or task

} // disable all nonlocal exception-types
} catch . . . // catch nonlocal exceptions occurring in enable block
// finalization, nonlocal exceptions disabled

}

Several of the predefined kernel exception-types are implicitly enabled in certain contexts to ensure their prompt
delivery (see Section 4.10.1, p. 74).

The � C++ kernel polls implicitly for nonlocal exceptions (and cancellation, see Section 5, p. 77) when the following
occur:

� after a call to uBaseTask::yield,� when an _Enable statement is encountered,� when a uEnableCancel object is instantiated (see Section 5.2, p. 77)� after a task migrates to another cluster,� after a task unblocks if it blocked when trying to enter a monitor,� after a task unblocks if it blocked on an _Accept statement,� after a task unblocks if it blocked when acquiring a uLock,� after a task unblocks if it blocked when trying to perform I/O,� the first time a coroutine/task’s main routine is executed,� after uBaseCoroutine::suspend/uBaseCoroutine::resume return.

If this level of polling is insufficient, explicit polling is possible by calling:

bool uEHM::poll();

For throwable exceptions, the return value from poll is not usable because a throwable exception unwinds the stack
frame containing the call to poll. For resumable exceptions, poll returns true if a nonlocal resumable-exception was
delivered and false otherwise. In general, explicit polling is only necessary if pre-emption is disabled, a large number
of nonlocal exception-types are arriving, or timely propagation is important.

4.5. HANDLER 63

4.4.3 Concurrent Propagation

A local exception within a task is the same as for an exception within a routine or class. An exception raised and not
handled inside a task performs the C++ default action of calling terminate, which must abort (see Section 4.8.1, p. 72).
As mentioned, a nonlocal exception between a task and a coroutine is the same as between coroutines (sequential). A
concurrent exception between tasks is more complex due to the multiple threads.

Concurrent exceptions provide an additional kind of communication over a normal member call. That is, a concur-
rent exception can be used to force a communication when an execution state might otherwise be computing instead
of accepting calls. For example, two tasks may begin searching for a key in different sets; the first task to find the key
needs to inform the other task to stop searching, e.g.:

_Task searcher {
searcher &partner; // other searching task
void main() {

try {
_Enable {

. . . // implicit or explicit polling is occurring
if (key == . . .)

_Throw stop() _At partner; // inform partner search is finished
}

} catch(stop) { . . . }

Without this control-flow mechanism, both tasks have to poll for a call from the other task at regular intervals to know
if the other task found the key. Concurrent exceptions handle this case and others.

When a task performs a concurrent raise, it blocks only long enough to deliver the exception to the specified task
and then continues. Hence, the communication is asynchronous, whereas member-call communication is synchronous.
Once an exception is delivered to a task, the runtime system propagates it at the soonest possible opportunity. If
multiple concurrent-exceptions are raised at a task, the exceptions are delivered serially.

4.5 Handler
A handler catches a propagated exception and attempts to deal with the exceptional event. Each handler is associated
with a particular block of code, called a guarded block. � C++ supports two kinds of handlers, termination and
resumption, which match with the kind of exception type (throw, resume, dual). An unhandled exception is dealt with
by an exception default-member (see Section 4.3.2, p. 59).

4.5.1 Termination

A termination handler is a corrective action after throwing an exception during execution of a guarded block. When
a termination handler begins execution, the stack from the point of the throw up to and including the guarded block
is unwound; hence, all block and routine activations on the stack at or below the guarded block are deallocated,
including all objects contained in these activations. After a termination handler completes, i.e., it does not perform
another throw, control continues after the guarded block it is associated with. A termination handler often only has
approximate knowledge of where an exceptional event occurred in the guarded block (e.g., a failure in library code),
and hence, any partial results of the guarded-block computation are suspect. In � C++, a termination handler is specified
identically to that in C++: catch clause of a try statement. (The details of termination handlers can be found in a C++
textbook.) Figure 4.2 shows how C++ and � C++ use a throw exception with throwing propagation and a termination
handler. The differences are using _Throw instead of throw, throwing the actual type instead of the static type, and
requiring a special exception type for all exceptions.

4.5.2 Resumption

A resumption handler is an intervention action after resuming an exception during execution of a guarded block.
When a resumption handler begins execution, the stack is not unwound because control normally returns to the resume
point; hence, all block and routine activations on the stack at or below the guarded block are retained, including all
objects contained in these activations. After a resumption handler completes, i.e., it does not perform another throw,
control returns to the raise statement initiating the propagation. To obtain precise knowledge of the exceptional event,
information about the event and variables at the resume point are passed to the handler so it can effect a change before

64 CHAPTER 4. EXCEPTIONS

C++ � C++

class E {
public:

int i;
E(int i) : i(i) {}

};

void f() {
throw E(3);

}
int main() {

try {
f();

} catch(E e) {
cout << e.i << endl;
throw;

} // try
}

_ThrowEvent E {
public:

int i;
E(int i) : i(i) {}

};

void f() {
_Throw E(3);

}
void uMain::main() {

try {
f();

} catch(E e) {
cout << e.i << endl;
_Throw;

} // try
}

Figure 4.2: C++ versus � C++ Throwing Propagation

returning. Alternatively, the resumption handler may determine a correction is impossible and throw an exception,
effectively changing the original resume into a throw. Unlike normal routine calls, the call to a resumption handler is
dynamically bound rather than statically bound, so different corrections can occur for the same static context.

In � C++, a resumption handler must be specified using a syntax different from the C++ catch clause of a try
statement. Figure 4.3 shows the ideal syntax for specifying resumption handlers on the left, and the compromise
syntax provided by � C++ on the right. On the left, the resumption handler is, in effect, a nested routine called when a
propagated resume exception is caught by the handler; when the resumption handler completes, control returns back
to the point of the raise. Values at the raise point can be modified directly in the handler if variables are visible in both
contexts, or indirectly through reference or pointer parameters; there is no concept of a return value from a resumption
handler, as is possible with a normal routine. Unfortunately, C++ has no notion of nested routines, so it is largely
impossible to achieve the ideal resumption-handler syntax.

On the right is the simulation of the ideal resumption-handler syntax. The most significant change is the movement
of the resumption-handler bodies to routines h1 and H2::operator(), respectively. Also, the direct access of local
variables x and y in the first resume handler necessitates creating a functor so that h2 can access them.

In detail, � C++ extends the try block to set up resumption handlers, where the resumption handler is a routine.
Any number of resumption handlers can be associated with a try block and there are 2 different forms for specifying
a resumption handler:

try <E1,h> <E2> . . . {
// statements to be guarded

} // possible catch clauses

The 2 forms of specifying a resumption handler are:

1. handler code for either a specific exception or catch any:

specific exception catch any

try <E1, h> { // catch E1, call h
. . .

}

try <. . ., h> { // catch any exception, call h
. . .

}

The resumable exception-type E1 or any resumable exception-type with “. . .”, like catch(. . .), is handled by rou-
tine/functor h. Like catch(. . .) clause, a < . . . > resumption clause must appear at the end of the list of resumption
handlers:

4.5. HANDLER 65

Ideal Syntax Actual � C++ Syntax

_ResumeEvent R1 {
public:

int &i; char &c;
R1(int &i, char &c) : i(i), c(c) {}

};
_ResumeEvent R2 {};

void f(int x, char y) { _Resume R2(); }
void g(int &x, char &y) { _Resume R1(x, y); }

void uMain::main() {
try {

int x = 0;
char y =

�

a
�

;

g(x, y);

try {
f(x, y);

} resume(R2) {
x = 2; y =

�

c
�

; // modify local variables
} resume(. . .) { // just return
} // try
try {

g(x, y);
} resume(R1) { // just return
} // try

} resume(R1 &r) {
// cannot see variables x and y
r.i = 1; r.c =

�

b
�

; // modify arguments
} // try

}

_ResumeEvent R1 {
public:

int &i; char &c;
R1(int &i, char &c) : i(i), c(c) {}

};
_ResumeEvent R2 {};

void f(int x, char y) { _Resume R2(); }
void g(int &x, char &y) { _Resume R1(x, y); }

void h1(R1 &r) { r.i = 1; r.c =
�

b
�

; }
struct H2 { // functor

int &i; char &c;
H2(int &i, char &c) : i(i), c(c) {}
void operator()(R2 & r) { // required

i = 2; c =
�

c
�

;
}

};
void uMain::main() {

try <R1,h1> {
int x = 0;
char y =

�

a
�

;

g(x, y);
H2 h2(x, y); // bind to locals
try <R2,h2><. . .> {

f(x, y);

} // try
try <R1> {

g(x, y);

} // try

} // try
}

Figure 4.3: Syntax for Resumption Handlers

try <E1,h1> <E2,h2> <E3,h2> <. . .,h3> /* must appear last in list */ {
. . .

}

The handler routine or functor must take the exception type as a reference parameter:

void h(E1 &) // routine
void H::operator()(E1 &) // functor

unless the exception type is “. . .” because then the exception type is unknown. Type checking is performed to
ensure a proper handler is specified to handle the designated exception type.

2. no handler code for either a specific exception or catch any:

66 CHAPTER 4. EXCEPTIONS

specific exception catch any

try <E1> { // catch E1, return
. . .

}

try <. . .> { // catch any exception, return
. . .

}

The resumable exception-type E1 or any resumable exception-type with “. . .” is handled by an empty handler.
This eliminates having to create a handler routine with an empty routine body.

During propagation of a resuming raise for a resume/dual exception, exception matching at each try block is similar to
a throwing raise: the first matching exception type is selected, but checking the resume/dual exception-types is from
left to right at the top of the extended try block rather top to bottom as for catch clauses.

4.5.2.1 Recursive Resuming

Resuming does not unwind the stack. As result, handlers defined in previous scopes continue to be present during
resuming propagation. In throwing propagation, the handlers in previous scopes disappear as the stack is unwound.
In some languages with a resuming propagation [Mac77, BMZ92, Geh92], the presence of resumption handlers in
previous scopes can cause a situation called recursive resuming. The simplest situation where recursive resuming
can occur is when a handler for a resuming exception-type resumes the same exception, e.g.:

_ResumeEvent R {};

void f(R &) {
_Resume R();

}
void uMain::main() {

try <R,f> {
_Resume R();

}
}

Routine uMain::main sets up a try block for resuming exception-type R with handler routine f, respectively. Handler f
is invoked by the resume, and the blocks on the call stack are:

uMain::main � try<R,f> � f()

Then f resumes an exception of type R again, which finds the handler just above it at <R,f> and invokes handler routine
f again, and this continues until the runtime stack overflows. Recursive resuming is similar to infinite recursion, and
is difficult to discover both at compile time and at runtime because of the dynamic choice of a handler. Concurrent
resuming compounds the difficulty because it can cause recursive resuming where it is impossible otherwise because
the concurrent exception can be delivered at any time.

�
An implicit form of recursive resuming can occur if yield or uEHM::poll is called from within the

resumption handler. Each of these operations results in a check for delivered exceptions, which can then
result in a call to another resumption handler. As a result, the stack can grow, possibly exceeding the task’s
stack size. In general, this error is rare because there is usually sufficient stack space and the number of
delivered resuming exceptions is small. Nevertheless, care must be taken when calling yield or uEHM::poll
directly or indirectly from a resumption handler.

�

4.5.2.2 Preventing Recursive Resuming

Recursive resuming is probably the only legitimate criticism against resuming propagation. However, not all excep-
tions handled by a resumption handler cause recursive resuming. Even if a resumption handler resumes the exception it
handles, which guarantees activating the same resumption handler again, (infinite) recursive resuming may not happen
because the handler can take a different execution path as a result of a modified execution state. Because the resuming
propagation suggested previously searches for a handler by simply going down the runtime stack one stack frame at a
time, it has the recursive resuming problem. � C++ has a modified propagation mechanism that provides a solution to
the recursive resuming problem. Furthermore, the mechanism is extended to cover concurrent exceptions.

The modified propagation mechanism goes down the execution stack one level at a time as it does normally to
find a handler capable of handling the exception being propagated. However, during propagation all the resumption

4.5. HANDLER 67

handlers at each guarded block being “visited” are marked ineligible (denoted by italics), whether or not a handler is
found. The mark is cleared only if the exception is handled either by a termination or resumption handler.

How does this new propagation mechanism make a difference? Given the previous runtime stack:

uMain::main � try<R,f> � f()

the handler <R,f> is marked ineligible when R is caught at the try block and f is called. Hence, the exception cannot
be handled by <R,f>, and the recursion is avoided and the default action occurs for R. Essentially, � C++ follows a
common rule for throw and resume propagation: between a raise and its handler, each handler is eligible only once.

When handling an exception, the flow of the execution can enter additional guarded blocks. For example, if the
resumption-handler block f is augmented to:

void f(R &) {
try <R,g> {

_Resume R();
}

}

where g is an additional resumption handler, the call stack is extended to the following:

uMain::main � try<R,f> � f() � try<R,g>

and the handler g is examined as it is unmarked.
� C++ resuming propagation does not preclude all infinite recursions with respect to propagation, e.g.:

_ResumeEvent R {};

void f(R &) {
try <R,f> {

_Resume R();
}

}
void uMain::main() {

try <R,f> {
_Resume R();

}
}

Here, each call to f creates a new try block to handle the next recursion, resulting in an infinite number of handlers:

uMain::main � try<R,f> � f() � try<R,f> � . . .

As a result, there is always an eligible handler to catch the next exception in the recursion. This situation is considered
a programming error with respect to recursion not propagation.

If a resumption handler throws an exception, a termination handler guarding the same block is still eligible, e.g.:

_DualEvent R {};

void f() { _Resume R(); }
void g(R &) { _Throw R(); }

void uMain::main() {
try <R,g> {

f();
} catch(R) {
}

}

which results in the following call stack:

uMain::main � try<R,g> catch(R) � f() � g()

Notice that while the resumption handler for R is marked ineligible, the termination handler for the same try block
is still eligible. (Also note the exception-type R is changed to a dual exception-type so it can be both resumed and
thrown.)

All handlers are considered unmarked when propagating nonlocal exceptions because the exception is unrelated to

68 CHAPTER 4. EXCEPTIONS

any existing propagation. Therefore, the propagation mechanism searches every handler on the runtime stack. Hence,
a handler ineligible to handle a local exception can be chosen to handle a delivered nonlocal exception, reflecting the
fact that a new propagation has started.

4.5.2.3 Commentary

Of the few languages with resumption, the language Mesa [MMS79] is probably the only one that also solved the
recursive resuming problem. The Mesa scheme prevents recursive resuming by not reusing a handler clause bound
to a specific invoked block, i.e., once a handler is used as part of handling an exception, it is not used again. The
propagation mechanism always starts from the top of the stack to find an unmarked handler for a resume exception.
However, this unambiguous semantics is often described as confusing.

The following program demonstrates how � C++ and Mesa solve recursive resuming, but with different solutions:

_ResumeEvent R1 {};
_ResumeEvent R2 {};

void f() { _Resume R1(); }
void g(R2 &) { _Resume R1(); }
void h(R1 &) { _Resume R2(); }
void j(R2 &) {}

void uMain::main() {
try <R2,j> {

try <R1,h> {
try <R2,g> {

f();
}

}
}

}

The following stack is generated at the point when resumption-handler h is called from f:

uMain::main � try<R2,j> � try<R1,h> � try<R2,g> � f() � h()

The potential infinite recursion occurs because h resumes an exception of type R2, and there is resumption-handler
try<R2,g>, which resumes an exception of type R1, while resumption-handler try<R1,h> is still on the stack. Hence,
handler body h invokes handler body g and vice versa with no case to stop the recursion.

� C++ propagation prevents the infinite recursion by marking both resumption handlers as ineligible before invoking
resuming body h, e.g.:

uMain::main � try<R2,j> � try<R1,h> � try<R2,g> � f() � h()

Therefore, when h resumes an exception of type R2 the next eligible handler is the one with resume body j. Mesa
propagation prevents the infinite recursion by only marking an unhandled handler, i.e., a handler that has not returned,
as ineligible, resulting in:

uMain::main � try<R2,j> � try<R1,h> � try<R2,g> � f() � h()

Hence, when h resumes an exception of type R2 the next eligible handler is the one with resume body g. As a result,
handler body g resumes an exception of type R1 and there is no infinite recursion. However, the confusion with the
Mesa semantics is that there is no handler for R1, even though the nested try blocks appear to properly deal with this
situation. In fact, looking at the static structure, a programmer might incorrectly assume there is an infinite recursion
between handlers h and g, as they resume one another. This programmer confusion results in a reticence by language
designers to incorporate resuming facilities in new languages. However, as � C++ shows, there are reasonable solutions
to these issues, and hence, there is no reason to preclude resuming facilities.

4.6 Bound Exceptions
To allow for additional control over the handling of exceptions, � C++ supports the notion of bound exceptions. This
concept binds the object raising an exception with the raised exception; a reference to the object can be used in a
handler clause for finer-grain matching, which is more consistent with the object-oriented design of a program.

4.6. BOUND EXCEPTIONS 69

4.6.1 Deficiencies of Standard C++ Exception Handling

In C++, only the exception type of the raised exception is used when matching catch clauses; the object raising the
exception does not participate in the matching. In many cases, it is important to know which object raised the exception
type for proper handling. For example, when reading from a file object, the exception-type IOError may be raised:

file Datafile, Logfile;
try {

. . . Datafile.read(); . . .

. . . Logfile.read(); . . .
} catch (IOError) {

// handle exception from which object ?
}

The try block provides a handler for IOError exceptions generated while reading file objects Datafile and Logfile.
However, if either read raises IOError, it is impossible for the handler to know which object failed during reading.
The handler can only infer the exception originates in some instance of the file class. If other classes throw IOError,
the handler knows even less. Even if the handler can only be entered by calls to Datafile.read() and Logfile.read(), it
is unlikely the handler can perform a meaningful action without knowing which file raised the exception. Finally, it
would be inconvenient to protect each individual read with a try block to differentiate between them, as this would
largely mimic checking return-codes after each call to read.

Similar to package-specific exceptions in Ada [Int95], it is beneficial to provide object-specific handlers, e.g.:

try {
. . . Datafile.read(); . . .
. . . Logfile.read(); . . .

} catch (Datafile.IOError) {
// handle Datafile IOError

} catch (Logfile.IOError) {
// handle Logfile IOError

} catch (IOError) {
// handler IOError from other objects

}

The first two catch clauses qualify the exception type with an object to specialize the matching. That is, only if the
exception is generated by the specified object does the match occur. It is now possible to differentiate between the
specified files and still use the unqualified form to handle the same exception type generated by any other objects.

�
Bound exceptions cannot be trivially mimicked by other mechanisms. Deriving a new exception type

for each file object (e.g., Logfile_IOError from IOError) results in an explosion in the total number of
exception types, and cannot handle dynamically allocated objects, which have no static name. Passing the
associated object as an argument to the handler and checking if the argument is the bound object, as in:

catch(IOError e) { // pass file-object address at raise
if (e.obj == &f) . . . // deal only with f
else throw // reraise exception

requires programmers to follow a coding convention of reraising the exception if the bound object is
inappropriate [BMZ92]. Such a coding convention is unreliable, significantly reducing robustness. In
addition, mimicking becomes infeasible for derived exception-types using the termination model, as in:

class B {. . .}; // base exception-type
class D : public B {. . .}; // derived exception-type
. . .
try {

. . . throw D(this); // pass object address
} catch(D e) {

if (e.o == &o1) . . . // deal only with o1
else throw // reraise exception

} catch(B e) {
if (e.o == &o2) . . . // deal only with o2
else throw // reraise exception

// bound form
} catch(o1.D) {

} catch(o2.B) {

70 CHAPTER 4. EXCEPTIONS

When exception type D is raised, the problem occurs when the first handler catches the derived exception-
type and reraises it if the object is inappropriate. The reraise immediately terminates the current guarded
block, which precludes the handler for the base exception-type in that guarded block from being con-
sidered. The bound form (on the right) matches the handler for the base exception-type. Therefore, the
“catch first, then reraise” approach is an incomplete substitute for bound exceptions.

�

4.6.2 Object Binding

In � C++, every exception derived from the three basic exception types can potentially be bound. Binding occurs
implicitly when using � C++’s raising statements, i.e., _Resume and _Throw. In the case of a local raise, the binding
is to the object in whose member routine the raise occurs. In the previous example, an exception raised in a call to
Datafile.read() is bound to Datafile; an exception raised in a call to Logfile.read() is bound to Logfile. If the raise occurs
inside a static member routine or in a free routine, there is no binding. In the case of a non-local raise, the binding is
to the coroutine/task executing the raise.

4.6.3 Bound Handlers

Bound handlers provide an object-specific handler for a bound exception. Matching is specified by prepending the
binding expression to the exception type using the “.” field-selection operator; the “catch-any” handler, . . ., does not
have a bound form.

4.6.3.1 Matching

A bound handler matches when the binding at the handler clause is identical to the binding associated with the currently
propagated exception and the exception type in the handler clause is identical to or a base-type of the currently
propagated exception type.

Bound handler clauses can be mixed with normal (unbound) handlers; the standard rules of lexical precedence
determine which handler matches if multiple are eligible. Any expression that evaluates to an lvalue is a valid binding
for a handler, but in practice, it only makes sense to specify an object that has a member function capable of raising
an exception. Such a binding expression may or may not be evaluated during matching, and in the case of multiple
bound-handler clauses, in undefined order. Hence, care must be taken when specifying binding expressions containing
side-effects.

4.6.3.2 Termination

Bound termination handlers appear in the C++ catch clause:

catch(raising-object . throwable-type [variable]) { . . . }

In the previous example, catch(Logfile.IOError) is a catch clause specifying a bound handler with binding Logfile and
exception-type IOError.

4.6.3.3 Resumption

Bound resumption handlers appear in the � C++ resumption handler location at the start of a try block (see Section 4.5.2,
p. 63):

try < raising-object . resumeable-type , expression > // form 1, handler code
< raising-object . resumeable-type > // form 2, no handler code
{ . . . }

An example of a bound resumption clause is try <uThisCoroutine().starter(), handler>, where the binding to be matched
is uThisCoroutine().starter(), which suggests a non-local exception is expected.

4.7 Inheritance

Table 4.1 shows the forms of inheritance allowed among the different kinds of exception types. First, the case of
single public inheritance among homogeneous kinds of exception type, i.e., base and derived type are the same kind,
is supported in � C++ (major diagonal), e.g.:

4.7. INHERITANCE 71

_ThrowEvent TEbase {};
_ThrowEvent TEderived : public TEbase {}; // homogeneous public inheritance
_ResumeEvent REbase {};
_ResumeEvent REderived : public REbase {}; // homogeneous public inheritance
_DualEvent DEbase {};
_DualEvent DEderived : public DEbase {}; // homogeneous public inheritance

In this situation, all implicit functionality matches between base and derived types, and therefore, there are no prob-
lems. Public derivation of exception types is for building the three exception-type hierarchies, and restricting public
inheritance to only exception types enhances the distinction between the class and exception hierarchies. Single pri-
vate/protected inheritance among homogeneous kinds of exception types is not supported, e.g.:

_ThrowEvent TEderived : private TEbase {}; // homogeneous private inheritance, not allowed
_ThrowEvent TEderived : protected TEbase {}; // homogeneous protected inheritance, not allowed

because each exception type must appear in one of the three exception-type hierarchies (throw, resume, dual), and
hence must be a subtype of another exception type of the same kind. Neither private nor protected inheritance
establishes a subtyping relationship.

base public only / NO multiple inheritance
derived struct/class throw raise dual

struct/class
�

X X X
throw

� �
X X

raise
�

X
�

X
dual

�
X X

�

Table 4.1: Inheritance among Exception Types

Second, the case of single private/protected/public inheritance among heterogeneous kinds of type, i.e., base and
derived type of different kind, is supported in � C++ only if the base kind is an ordinary class, e.g.:

class cbase {}; // only class kind allowed

_ThrowEvent TEderived : private cbase {}; // heterogeneous private inheritance
_ResumeEvent REderived : protected cbase{}; // heterogeneous protected inheritance
_DualEvent DEderived : public cbase {}; // heterogeneous public inheritance

An example for using such inheritance is different exception types using a common logging class. The ordinary class
implements the logging functionality and can be reused among the different exception types.

Heterogeneous inheritance among exception types and other kinds of class, exception types, coroutine, mutex or
task, are not allowed, e.g.:

_ThrowEvent TEbase {};

struct structDerived : public TEbase {}; // not allowed
class classDerived : public TEbase {}; // not allowed
_ResumeEvent REderived : public TEbase {}; // not allowed
_Coroutine corDerived : public TEbase {}; // not allowed
_Monitor monitorDerived : public TEbase {}; // not allowed
_Task taskDerived : public TEbase {}; // not allowed

A structure/class cannot inherit from an exception type because operations defined for exception types may cause
problems when accessed through a class object. This restriction does not mean exception types and non-exception-
types cannot share code. Rather, shared code must be factored out as an ordinary class and then inherited by exception
types and non-exception-types, e.g.:

class commonBase {};

class classDerived : public commonBase {};
_ResumeEvent REderived : public commonBase {};

72 CHAPTER 4. EXCEPTIONS

Technically, it is possible for exception types to inherit from mutex, coroutine, and task types, but logically there
does not appear to be a need. Exception types do not need mutual exclusion because a new exception is generated
at each throw, so the exception is not a shared resource. For example, arithmetic overflow can be encountered by
different executions but each arithmetic overflow is independent. Hence, there is no race condition for exception
types. Finally, exception types do not need context switching or a thread to carry out computation. Consequently, any
form of inheritance from a mutex, coroutine or task by an exception type is rejected.

Multiple inheritance is allowed for private/protected/public inheritance of exception types with struct/class for
the same reason as single inheritance.

4.8 Predefined Exception Routines
C++ supplies several builtin routines to provide information and deal with problems during propagation. The semantics
of these builtin routines changes in a concurrent environment.

4.8.1 terminate/set terminate

The terminate routine is called implicitly in a number of different situations when a problem prevents successful
propagation (see a C++ reference manual for a complete list of propagation problems). The most common propagation
problem is failing to locate a matching handler. The terminate routine provides an indirect mechanism to call a
terminate-handler, which is a routine of type terminate_handler:

typedef void (*terminate_handler)();

and is set using the builtin routine set_terminate, which has type:

terminate_handler set_terminate(terminate_handler handler) throw();

The previously set terminate-handler is returned when a new handler is set. The default terminate-handler aborts the
program; a user-defined terminate-handler must also terminate the program, i.e., it may not return or raise an exception,
but it can perform some action before terminating, e.g.:

void new_handler() {
// write out message
// terminate execution (abort/exit)

}
terminate_handler old_handler = set_terminate(new_handler);

In a sequential program, there is only one terminate-handler for the entire program, which can be set and restored as
needed during execution.

In a concurrent program, having a single terminate-handler for all tasks does not work because the value set by
one task can be changed by another task at any time. In other words, no task can ensure that the terminate-handler
it sets is the one that is used during a propagation problem. Therefore, in � C++, each task has its own terminate-
handler, set using the set_terminate routine. Hence, each task can perform some specific action when a problem
occurs during propagation, but the terminate-handler must still terminate the program, i.e., no terminate-handler may
return (see Section 6.2.2, p. 85). The default terminate-handler for each task aborts the program.

Notice, the terminate-handler is associated with a task versus a coroutine. The reason for this semantics is that the
coroutine is essentially subordinate to the task because the coroutine is executed by the task’s thread. While propaga-
tion problems can occur while executing on the coroutine’s stack, these problems are best dealt with by the task execut-
ing the coroutine because the program must terminate at this point. In fact, for the propagation problem of failing to lo-
cate a matching handler, the coroutine implicitly raises the predefined exception uBaseCoroutine::UnHandledException
in its last resumer coroutine/task (see Section 6.2.3.1, p. 86), which ultimately transfers back to a task that either han-
dles this exception or has its terminate-handler invoked.

4.8.2 unexpected/set unexpected

The unexpected routine is called implicitly for the specific propagation problem of raising an exception that does not
appear in a routine’s exception specification (throw list), e.g.:

int rtn(. . .) throw(Ex1) { // exception specification
. . . throw Ex2; . . . // Ex2 not in exception specification

}

4.9. PROGRAMMING WITH EXCEPTIONS 73

The unexpected routine provides an indirect mechanism to call an unexpected-handler, which is a routine of type
unexpected_handler:

typedef void (*unexpected_handler)();

and is set using the builtin routine set_unexpected, which has type:

unexpected_handler set_unexpected(unexpected_handler handler) throw();

The previously set unexpected-handler is returned when a new handler is set. The default unexpected-handler calls the
terminate routine; like a terminate-handler, a user-defined unexpected-handler may not return, but it can perform some
action and either terminate or raise an exception, e.g.:

void new_handler() {
// write out message
// raise new exception

}
unexpected_handler old_handler = set_unexpected(new_handler);

In a sequential program, there is only one unexpected-handler for the entire program, which can be set and restored as
needed during execution.

In a � C++ program, having a single unexpected-handler for all coroutines/tasks does not work for the same reason
as for the terminate-handler, i.e., the value can change at any time. Because it is possible to handle this specific
propagation-problem programmatically (e.g., raise an exception) versus terminating the program, a coroutine can
install a handler and deal with this problem during propagation on its stack. Therefore, in � C++, each coroutine (and
hence, task) has its own unexpected-handler, set using the set_unexpected routine. The default unexpected-handler
for each coroutine/task calls the terminate routine.

4.8.3 uncaught exception

The uncaught_exception routine returns true if propagation is in progress. In a � C++ program, the result of this routine
is specific to the coroutine/task that raises the exception. Hence, the occurrence of propagation in one coroutine/task
is independent of that occurring in any other coroutine/task. For example, a destructor may not raise a new exception
if it is invoked during propagation; if it does, the terminate routine is called. It is possible to use uncaught_exception
to check for this case and handle it differently from normal destructor execution, e.g.:

~T() { // destructor
if (. . . && ! uncaught_exception()) { // prevent propagation problem

// raise an exception because cleanup problem
} else {

// cleanup as best as possible
}

}

4.9 Programming with Exceptions

Like many other programming features, an EHM aims to make certain programming tasks easier and improve the
overall quality of a program. Indeed, choosing to use the EHM over other available flow control mechanisms is a
tradeoff. For example, a programmer may decide to use exceptions over some conditional statement for clarity. This
decision may sacrifice runtime efficiency and memory space. In other words, universal, crisp criteria for making a
decision do not exist. Nevertheless, some important guidelines are given to encourage good use of exceptions.

First, use exceptions to indicate exceptional event in library code to ensure a library user cannot ignoring the
event, as is possible with return codes and status values. Hence, exceptions improve safety and robustness, while still
allowing a library user to explicitly catch and do nothing about an exception. Second, use exceptions to improve clarity
and maintainability over techniques like status return values and status flags where normal and exceptional control-
flow are mixed together within a block. Using exceptions not only separates the normal flow in a guarded block from
the exceptional flow in handlers, but also avoids mixing normal return-values with exceptional return-values. This
separation makes subsequent changes easier. Third, use exceptions to indicate conditions that happen rarely at runtime
for the following reasons:

74 CHAPTER 4. EXCEPTIONS

� The normal flow of the program should represent what should happen most of the time, allowing programmers
to easily understand the common functionality of a code segment. The exceptional flow then represents subtle
details to handle rare situations, such as boundary conditions.

� Because the propagation mechanism requires a search for the handler, it is usually expensive. Part of the cost is
a result of the dynamic choice of a handler. Furthermore, this dynamic choice can be less understandable than
a normal routine call. Hence, there is a potential for high runtime cost with exceptions and control flow can be
more difficult to understand. Nevertheless, the net complexity is reduced using exceptions compared to other
approaches.

4.9.1 Throw Exception-Type

Typical use of a throw exception-type is for graceful termination of an operation, coroutine, task or program. Ter-
mination is graceful if it triggers a sequence of cleanup actions in the execution context. Examples of abrupt (or
non-graceful) termination include the uAbort routine (abort in C) and the kill 9 command in UNIX. Graceful termi-
nation is more important in a concurrent environment because one execution can terminate while others continue. The
terminating operation must be given a chance to release any shared resources it has acquired (the cleanup action) in
order to maintain the integrity of the execution environment. For example, deadlock is potentially a rare condition and
a thrown exception can force graceful termination of a blocked operation, consequently leading to the release of some
shared resources and breaking of the deadlock.

4.9.2 Resume Exception-Type

Typical use of a resume exception-type is to do additional computation, in the form of a resumption handler, for
an exceptional event or as a form of polymorphism, where an action is left unspecified (e.g., in a library routine)
and specified by a user using dynamic lookup (similar to a virtual routine in a class). The additional computation may
modify the state of the execution, which can be useful for error recovery. Alternatively, it may cause information about
the execution to be gathered and saved as a side-effect without effectively modifying the execution’s computation.

4.9.3 Dual Exception-Type

Typical use of a dual exception-type is in situations without a clear choice of termination or resumption, because
exceptions of dual type can be resumed initially so that resumption is feasible to avoid loss of local information. If
no resumption handler can handle the exception, the same exception-type can be thrown. For example, in a real-
time application, missing a real-time constraint, say an execution cannot finish before a deadline, is considered an
exceptional event. For some applications, the constraint violation can result in termination. Other applications can
modify some internal parameters to make their execution faster by sacrificing the quality of the solution or by acquiring
more computing resources so execution can continue. The dual exception-type is ideal for this kind of exceptional
event.

4.10 Predefined Exception-Types
� C++ provides a number of predefined exception-types, which are structured into the hierarchy in Figure 4.4, p. 76.
Notice that all predefined exception-types are dual so that they can be both resumed or thrown. Also, the predefined
exception-types are divided into two major groups: kernel and I/O. The kernel exception-types are raised by the � C++
runtime kernel when problems arise using the � C++ concurrency extensions. The I/O exception-types are raised by the
� C++ I/O library when problems arise using the file system. Only the kernel exception-types are discussed, as the I/O
exception-types are OS specific.

4.10.1 Implicitly Enabled Exception-Types

Certain of the predefined kernel exception-types are implicitly enabled in certain contexts to ensure prompt delivery
for nonlocal exceptions. The predefined exception-type uBaseCoroutine::Failure is implicitly enabled and polling
is performed when a coroutine restarts after a suspend or resume. The predefined exception-type uSerial::Failure
is implicitly enabled and polling is performed when a task restarts from blocking on entry to a mutex member. This

4.10. PREDEFINED EXCEPTION-TYPES 75

situation also occurs when a task restarts after being accept blocked on a _Accept or a wait. The predefined exception-
type uSerial::RendezvousFailure is implicitly enabled and polling is performed when an acceptor task restarts after
blocking for a rendezvous to finish.

4.10.2 Breaking a Rendezvous

As mentioned in Section 2.9.2.2, p. 23, the accept statement forms a rendezvous between the acceptor and the accepted
tasks, where a rendezvous is a point in time at which both tasks wait for a section of code to execute before continuing.
It can be crucial to correctness that the acceptor know if the accepted task does not complete the rendezvous code,
otherwise the acceptor task continues under the incorrect assumption that the rendezvous action has occurred. To this
end, an exception of type uSerial::RendezvousFailure is raised at the acceptor task if the accepted member terminates
abnormally. It may also be necessary for a mutex member to know if the acceptor has restarted, and hence, the
rendezvous has ended. This situation can happen if the mutex member calls a private member, which may conditionally
wait, which ends the rendezvous. The macro uRendezvousAcceptor can be used only inside mutex types to determine
if a rendezvous has ended:

uBaseCoroutine *uRendezvousAcceptor();

It returns NULL if the rendezvous is ended; otherwise it returns the address of the rendezvous partner. In addition,
calling uRendezvousAcceptor has the side effect of cancelling the implicit resume of uSerial::RendezvousFailure at
the acceptor. This capability allows a mutex member to terminate with an exception without informing the acceptor.

76 CHAPTER 4. EXCEPTIONS

uEHM::uDualClass
uKernelFailure

uSerial::Failure
uSerial::EntryFailure
uSerial::RendezvousFailure
uCondition::WaitingFailure

uBaseCoroutine::Failure
uBaseCoroutine::UnHandledException

uIOFailure
uFile::Failure

uFile::TerminateFailure
uFile::StatusFailure
uFileAccess::Failure

uFileAccess::OpenFailure
uFileAccess::CloseFailure
uFileAccess::SeekFailure
uFileAccess::SyncFailure
uFileAccess::ReadFailure

uFileAccess::ReadTimeout
uFileAccess::WriteFailure

uFileAccess::WriteTimeout
uSocket::Failure

uSocket::OpenFailure
uSocket::CloseFailure
uSocketServer::Failure

uSocketServer::OpenFailure
uSocketServer::CloseFailure
uSocketServer::ReadFailure

uSocketServer::ReadTimeout
uSocketServer::WriteFailure

uSocketServer::WriteTimeout
uSocketAccept::Failure

uSocketAccept::OpenFailure
uSocketAccept::uOpenTimeout

uSocketAccept::CloseFailure
uSocketAccept::ReadFailure

uSocketAccept::ReadTimeout
uSocketAccept::WriteFailure

uSocketAccept::WriteTimeout
uSocketClient::Failure

uSocketClient::OpenFailure
uSocketClient::OpenTimeout

uSocketClient::CloseFailure
uSocketClient::ReadFailure

uSocketClient::ReadTimeout
uSocketClient::WriteFailure

uSocketClient::WriteTimeout
uEHM::uThrowClass

// no predefines
uEHM::uResumeClass

// no predefines

Figure 4.4: � C++ Predefined Exception-Type Hierarchy

Chapter 5

Cancellation

Cancellation is a mechanism to safely terminate the execution of a coroutine or task. Any coroutine/task may cancel
itself or another coroutine/task by calling uBaseCoroutine::cancel() (see Section 2.7.2, p. 15). Cancelling a corou-
tine/task does not result in immediate cancellation of the object; cancellation only begins when the coroutine/task
encounters a cancellation checkpoint, such as uEHM::poll() or uBaseTask::yield() (see, p. 62 for a complete list),
which starts the cancellation for the cancelled object. Note, all cancellation points are polling points for asynchronous
exceptions and vice-versa. The more frequently cancellation checkpoints are encountered, the timelier the cancellation
initiation occurs. There is no provision to “uncancel” a coroutine/task once it is cancelled. However, it is possible
for the cancelled coroutine/task to control if and where cancellation starts (see Section 5.2). Once cancellation starts,
the stack of the coroutine/task is unwound, which executes the destructors of objects allocated on the stack as well as
catch-any exception handlers (i.e., catch (. . .)). This unwinding allows safe cleanup of any resources associated with
the cancelled coroutine/task. Unlike a nonlocal exception (see Section 4.4, p. 60), cancellation cannot be caught or
stopped unless the cleanup code aborts the program, which is the ultimate cancellation of all coroutines/tasks. Note,
cancellation does not work if a new exception is thrown inside a catch-any handler, e.g.:

catch (. . .) {
. . . _Throw anotherException(); . . .

}

Such constructs must be avoided if cancellation is to be used. Note, the explicit or implicit deletion of a non-terminated
coroutine (see, p. 15) forces cancellation. Routine uBaseCoroutine::cancelInProgress (see Section 2.7.2, p. 15) can
be used to check for this situation, so the throw can be conditional. Alternatively, ensure a coroutine’s main routine
terminates, which prevents implicit cancellation.

5.1 Using Cancellation
Cancellation is used in situations where the work of a task is not required any more and its resources should be
freed. Figure 5.1 shows a generic example in which a solution space is divided into sub-domains and worker tasks are
dispatched to search their respective sub-domain for a suitable solution. For this particular problem class, any specific
solution is sufficient. In the program, after uMain creates the tasks, it waits for a solution to be found by any of the
Worker tasks. If a Worker task finds a solution, it stores it in the Result monitor and restarts uMain (if appropriate).
Since a solution has been found, the other worker solutions are not required and allowing these workers to proceed
is a waste of resources. Hence, uMain marks them all for cancellation and uses the result. After the result has been
processed, uMain deletes the worker tasks, which allows for execution overlap of result processing with the worker
tasks detecting, initiating, and finishing cancellation. Alternatively, uMain can delete the workers right away, with the
consequence that it may have to wait for the worker tasks to finish cancellation before processing the result.

5.2 Enabling/Disabling Cancellation
A cancellee may not stop cancellation once in progress, but it can control when the cancellation begins. The abil-
ity to defer the start of cancellation can be used to ensure a block of code is completely executed, similar to en-
abling/disabling propagation (see Section 4.4.2, p. 61).

77

78 CHAPTER 5. CANCELLATION

#include <uC++.h>

const int NumOfWorkers = 16;
const unsigned int Domain = 0xffffffff;

_Monitor Result {
int res;
uCondition c;

public:
Result() : res(0) {}
int getResult() {

if (res == 0) c.wait(); // wait if no result has been found so far
return res;

}
void finish(int r) {

res = r; // store result
c.signal(); // wake up uMain

}
};

_Task Worker {
Result &r;
int subdomain;

public:
Worker(int sub, Result &res) : subdomain(sub), r(res) {}
void main() {

int finalresult;
// perform calculations with embedded cancellation checkpoints
r.finish(finalresult); // if result is found, store it in Result

}
};

void uMain::main () {
Worker *w[NumOfWorkers];
Result r;
for (int i = 0; i < NumOfWorkers; i += 1)

w[i] = new Worker(i * Domain / NumOfWorkers, r); // create worker tasks
int result = r.getResult();
for (int i = 0; i < NumOfWorkers; i += 1) {

w[i] >cancel(); // mark workers for cancellation
}
// do something with the result
for (int i = 0; i < NumOfWorkers; i += 1) {

delete w[i]; // only block if cancellation has not terminated worker
}

}

Figure 5.1: Cancellation Example

5.3. COMMENTARY 79

By default, cancellation is implicitly enabled for a coroutine/task (which is the opposite of nonlocal excep-
tions). Explicitly enabling/disabling cancellation is controlled by declaring an instance of one of the following types:
uEnableCancel or uDisableCancel. The object’s constructor saves the current cancellation state (enabled or disabled)
and sets the state appropriately; the object’s destructor resets the cancellation state to the previous state, e.g.:

{
uDisableCancel cancelDisable; // save current state, set to disable (variable name unimportant)
. . .
{

uEnableCancel cancelEnable; // save current state, set to enable (variable name unimportant) and
. . . // implicit poll/cancellation checkpoint

} // revert back to disabled
. . .

} // revert back to previous cancellation status

Note, creating an instance of uEnableCancel is a cancellation checkpoint, which polls for both cancellation and asyn-
chronous exceptions.

5.3 Commentary
Despite their similarities, cancellation and nonlocal exceptions are fundamentally different mechanisms in � C++. As a
result, the approach of using _Enable/_Disable with a special uCancellation type to control cancellation delivery was
rejected, e.g.:

_Enable <uCancellation> <. . .> /* asynchronous exceptions */ {
. . .

}

This approach is rejected because it suggests cancellation is part of the exception handling mechanism represented by
the exception type uCancellation, which is not the case. There is no way to raise or catch a cancellation as there is
with exceptions. In addition, the blanket _Enable/_Disable, which applies to all nonlocal exceptions, does not affect
cancellation.

80 CHAPTER 5. CANCELLATION

Chapter 6

Errors

The following are examples of the static/dynamic warnings/errors that can occur during the compilation/execution of
a � C++ program.

6.1 Static (Compile-time) Warnings/Errors

These static warnings/errors are generated by the � C++ translator not by the underlying C++ compiler. These warn-
ings/errors are specific to usage problems with the � C++ concurrency extensions. The following examples show
different situations, the message generated and an explanation of the message. While not all warning/error situations
are enumerated, the list covers the common one present in most � C++ programs.

The following program:

#include <uC++.h>
_Task T {

public:
void mem() {}

private:
void main() {

fini:
for (int i = 0; i < 10; i += 1) {

_Accept(mem) {
break fini;

} else;
}

}
};

generates these warnings when using the Wall compiler flag (actually generated by the C++ compiler not � C++):

test.cc:17: warning: label ‘ U C fini’ defined but not used
test.cc:11: warning: label ‘ U L000001’ defined but not used
test.cc:8: warning: label ‘fini’ defined but not used

These warning messages appear due to the way � C++ generates code. Labels are generated in a number of places but
are not always used depending on what happens later in the code. It is too difficult to detect all these cases and remove
the labels that are unnecessary. All of these kinds of warnings can be suppressed by adding the extra flag:

Wall Wno unused label

The following program:

81

82 CHAPTER 6. ERRORS

#include <uC++.h>
_Task T {

void main() {
_Accept(mem);

}
public:

void mem() {}
};

generates this error:

test.cc:4: uC++ Translator error: accept on a nomutex member ”mem”, possibly caused by accept state-
ment appearing before mutex-member definition.

because the accept of member mem appears before the definition of member mem, and hence, the � C++ translator
encounters the identifier mem before it knows it is a mutex member. C++ requires definition before use in most
circumstances.

The following program:

#include <uC++.h>
_Task T {

public:
void mem() {}

private:
void main() {

_Accept(mem);
else _Accept(mem);

}
};

generates this error:

test.cc:8: uC++ Translator error: multiple accepts of mutex member ”mem”.

because the accept statement specifies the same member, mem, twice. The second specification is superfluous.
The following program:

#include <uC++.h>
_Task T1 {};
_Task T2 {

private:
void main() {

_Accept(~T1);
}

};

generates this error:

test.cc:6: uC++ Translator error: accepting an invalid destructor; destructor name must be the same as the
containing class ”T2”.

because the accept statement specifies the destructor from a different class, T1, within class T2.
The following program:

#include <uC++.h>
_Mutex class M {};
_Coroutine C : public M {};
_Task T1 : public C {};
_Task T2 : public M, public C {};

generates these errors:

test.cc:3: uC++ Translator error: derived type ”C” of kind ”COROUTINE” is incompatible with the base type
”M” of kind ”MONITOR”; inheritance ignored.
test.cc:4: uC++ Translator error: derived type ”T1” of kind ”TASK” is incompatible with the base type ”C” of

6.1. STATIC (COMPILE-TIME) WARNINGS/ERRORS 83

kind ”COROUTINE”; inheritance ignored.
test.cc:5: uC++ Translator error: multiple inheritance disallowed between base type ”M” of kind ”MONITOR”
and base type ”C” of kind ”COROUTINE”; inheritance ignored.

because of inheritance restrictions among kinds of types in � C++ (see Section 2.14, p. 34).
Similarly, the following program:

#include <uC++.h>
_DualEvent T1 {};
_ThrowEvent T2 : public T1 {};
_DualEvent T3 : private T1 {};
_DualEvent T4 : public T1, public T3 {};

generates these errors:

test.cc:3: uC++ Translator error: derived type ”T2” of kind ”THROWEVENT” is incompatible with the base
type ”T1” of kind ”DUALEVENT”; inheritance ignored.
test.cc:4: uC++ Translator error: non-public inheritance disallowed between the derived type ”T3” of kind
”DUALEVENT” and the base type ”T1” of kind ”DUALEVENT”; inheritance ignored.
test.cc:5: uC++ Translator error: multiple inheritance disallowed between base type ”T1” of kind ”DUALEVENT”
and base type ”T3” of kind ”DUALEVENT”; inheritance ignored.

because of inheritance restrictions among exception types in � C++ (see Section 4.7, p. 70).
The following program:

#include <uC++.h>
_Task T; // prototype
_Coroutine T {}; // definition

generates this error:

test.cc:3: uC++ Translator error: ”T” redeclared with different kind.

because the kind of type for the prototype, _Task, does not match the kind of type for the definition, _Coroutine.
The following program:

#include <uC++.h>
_Mutex class M1 {};
_Mutex class M2 {};
_Mutex class M3 : public M1, public M2 {}; // multiple inheritance

generates this error:

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type ”M1” of kind ”MONI-
TOR” and base type ”M2” of kind ”MONITOR”; inheritance ignored.

because only one base type can be a mutex type when inheriting.
The following program:

#include <uC++.h>
_Task T {

public:
_Nomutex void mem();

};
_Mutex void T::mem() {}

generates this error:

test.cc:6: uC++ Translator error: mutex attribute of ”T::mem” conflicts with previously declared nomutex
attribute.

because the kind of mutual exclusion, _Nomutex, for the prototype of mem, does not match the kind of mutual
exclusion, _Mutex, for the definition.

The following program:

84 CHAPTER 6. ERRORS

#include <uC++.h>
_Task T {

public:
_Nomutex T() {} // must be mutex
_Mutex void *operator new(size_t) {} // must be nomutex
_Mutex void operator delete(void *) {} // must be nomutex
_Mutex static void mem() {} // must be nomutex
_Nomutex ~T() {} // must be mutex

};

generates these errors:

test.cc:4: uC++ Translator error: constructor must be mutex, nomutex attribute ignored.
test.cc:5: uC++ Translator error: ”new” operator must be nomutex, mutex attribute ignored.
test.cc:6: uC++ Translator error: ”delete” operator must be nomutex, mutex attribute ignored.
test.cc:7: uC++ Translator error: static member ”mem” must be nomutex, mutex attribute ignored.
test.cc:9: uC++ Translator error: destructor must be mutex for mutex type, nomutex attribute ignored.

because certain members may or may not have the mutex property for any mutex type. The constructor(s) of a mutex
type must be mutex because the thread of the constructing task is active in the object. Operators new and delete of
a mutex type must be nomutex because it is superfluous to make them mutex when the constructor and destructor
already ensure the correct form of mutual exclusion. The static member(s) of a mutex type must be nomutex because
it has no direct access to the object’s mutex properties, i.e., there is no this variable in a static member to control the
mutex object. Finally, a destructor must be mutex if it is a member of a mutex type because deletion requires mutual
exclusion.

The following program:

#include <uC++.h>
_Mutex class T1;
class T1 {}; // conflict between forward and actual qualifier

class T2 {};
_Mutex class T2; // conflict between forward and actual qualifier

_Mutex class T3; // conflicting forward declaration qualifiers
_Nomutex class T3; // ignore both forward declaration qualifiers

_Mutex class T4 {
void mem(int); // default nomutex

public:
void mem(int, int); // default mutex

};

generates these errors:

test.cc:3: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
previous declaration.
test.cc:6: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring
this declaration.
test.cc:9: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Assuming
default attribute.
test.cc:14: uC++ Translator error: mutex attribute of ”T4::mem” conflicts with previously declared nomutex
attribute.

because there are conflicts between mutex qualifiers. For type T1, the mutex qualifier for the forward declaration does
not match with the actual declaration because the default qualifier for a class is _Nomutex. For type T2, the mutex
qualifier for the later forward declaration does not match with the actual declaration for the same reason. For type
T3, the mutex qualifiers for the two forward declarations are conflicting so they are ignored at the actual declaration.
For mutex type T4, the default mutex qualifiers for the overloaded member routine, mem, are conflicting because one
is private, default _Nomutex, the other is public, default _Mutex, and � C++ requires overloaded members to have
identical mutex properties (see Sections 2.9.2.1, p. 22 and 2.17, p. 42).

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 85

The following program:

#include <uC++.h>
_Task /* no name */ {};

generates this error:

test.cc:2: uC++ Translator error: cannot create anonymous coroutine or task because of the need for
named constructors and destructors.

because a type without a name cannot have constructors or destructors since both are named after the type, and the
� C++ translator needs to generate constructors and destructors if not present for certain kinds of types.

6.2 Dynamic (Runtime) Warnings/Errors
These dynamic warnings/errors are generated by the � C++ runtime system not by the C++ runtime system. These
warnings/errors are specific to usage problems with the � C++ concurrency extensions. The following examples show
different situations, the message generated and an explanation of the message. While not all warning/error situations
are enumerated, the list covers the common one present in most � C++ programs.

6.2.1 Assertions

Assertions define runtime checks that must be true or the basic algorithm is incorrect; if the assertion is false, a message
is printed and the program is aborted. Assertions are written using the macro assert:

assert(boolean-expression);

Asserts can be turned off by defining the preprocessor variable NDEBUG before including assert.h. All asserts are
implicitly turned off when the compiler flag nodebug is specified (see Section 2.5.1, p. 10).

To use assertions in a � C++ program, include the file:

#include <assert.h>

6.2.2 Termination

A � C++ program can be terminated due to a failure using the UNIX routine abort, which stops all thread execution and
generates a core file for subsequent debugging (assuming the shell limits allow a core file to written). To terminate a
program, generate a core file, and print an error message, use the � C++ free routine uAbort:

void uAbort(char *format = "", . . .)

format is a string containing text to be printed and printf style format codes describing how to print the following
variable number of arguments. The number of elements in the variable argument list must match with the number
of format codes, as for printf. In addition to printing the user specified message, which normally describes the error,
routine uAbort prints the name of the currently executing task type, possibly naming the type of the currently executing
coroutine if the task’s thread is not executing on its own execution state at the time of the call.

A � C++ program can be terminated using the UNIX routine exit, which stops all thread execution and returns a
status code to the invoking shell:

void exit(int status);

Note, when exit is used to terminate a program, all global destructors are still executed. Any tasks, clusters, or
processors not deleted by this point are not flagged with an error, unlike normal program termination.

�
Because routine exit eliminates some error checking, it should not be used to end uMain::main to pass

back a return code to the shell, e.g.:

void uMain::main() {
. . .
exit(0);

}

Use the variable uRetCode from uMain::main instead (see Section 2.2, p. 8).
�

86 CHAPTER 6. ERRORS

6.2.3 Messages

The following examples show different error situations, the error message generated and an explanation of the error.
While not all error situations are enumerated, the list covers the common errors present in most � C++ programs.
Finally, most of these errors are generated only when using the debug compilation flag (see Section 2.5.1, p. 10).

6.2.3.1 Default Actions

The following examples show the default actions taken when certain exceptions are not caught and handled by the
program (see Section 4.3.2, p. 59). In all these cases, the default action is print appropriate error message and terminate
the program. While not all default actions are enumerated, the list covers the common problems present in many � C++
programs.

The following program:

#include <uC++.h>
void f() throw() { // throw no exceptions

throw 1;
}
void uMain::main() {

f();
}

generates this error:

uC++ Runtime error (UNIX pid:20242) Exception propagated through a function whose exception-specification
does not permit exceptions of that type. Type of last active exception: int Error occurred while executing
task uMain (0xffbef828).

because routine f defines it raises no exceptions and then an exception is raised from within it.
The following program:

#include <uC++.h>
void uMain::main() {

throw 1;
}

generates this error:

uC++ Runtime error (UNIX pid:13901) Propagation failed to find a matching handler. Possible cause is
a missing try block with appropriate catch clause for specified or derived exception type or throwing an
exception from within a destructor while propagating an exception. Type of last active exception: int Error
occurred while executing task uMain (0xffbef000).

because no try statement with an appropriate catch clause is in effect so propagation fails to locate a matching handler.
The following program:

#include <uC++.h>
void uMain::main() {

throw; // rethrow
}

generates this error:

uC++ Runtime error (UNIX pid:13291) Attempt to rethrow/reraise but no active exception. Possible cause
is a rethrow/reraise not directly or indirectly performed from a catch clause. Error occurred while executing
task uMain (0xffbef000).

because a rethrow must occur in a context with an active (already raised) exception so that exception can be raised
again.

The following program:

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 87

#include <uC++.h>
_Task T1 {

uCondition w;
public:

void mem() { w.wait(); }
private:

void main() {
_Accept(mem); // let T2 in so it can wait
w.signal(); // put T2 on acceptor/signalled stack
_Accept(~T1); // uMain is calling the destructor

}
};
_Task T2 {

T1 &t1;
void main() { t1.mem(); }

public:
T2(T1 &t1) : t1(t1) {}

};
void uMain::main() {

T1 *t1 = new T1;
T2 *t2 = new T2(*t1);
delete t1; // delete in same order as creation
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23337) (uSerial &)0x84470 : Entry failure while executing mutex destructor,
task uMain (0xffbef008) found blocked on acceptor/signalled stack. Error occurred while executing task T2
(0x8d550).

because task t2 is allowed to wait on condition variable w in t1.mem, and then task t1 signals condition w, which moves
task t2 to the acceptor/signalled stack, and accepts its destructor. As a result, when task uMain attempts to delete task
t1, it finds task t2 still blocked on the acceptor/signalled stack. Similarly, the following program:

#include <uC++.h>
_Task T1 {

public:
void mem() {}

private:
void main() { _Accept(~T1); }

};
_Task T2 {

T1 &t1;
public:

T2(T1 &t1) : t1(t1) {}
private:

void main() { t1.mem(); }
};
void uMain::main() {

T1 *t1 = new T1;
T2 *t2 = new T2(*t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23425) (uSerial &)0x84230 : Entry failure while executing mutex destructor,
task uMain (0xffbef008) found blocked on entry queue. Error occurred while executing task T2 (0x8d310).

88 CHAPTER 6. ERRORS

because task t2 happens to block on the call to t1.mem, and then task t1 accepts its destructor. As a result, when task
uMain attempts to delete task t1, it finds task t2 still blocked on the entry queue of t1.

The following program:

#include <uC++.h>
_ThrowEvent E {};

_Task T {
uBaseTask &t;

public:
T(uBaseTask &t) : t(t) {}
void mem() {

// uRendezvousAcceptor();
_Throw E();

}
private:

void main() {
_Accept(mem);

}
};

void uMain::main() {
T t(uThisTask());
try {

t.mem();
} catch(E &e) {
}

}

generates this error:

uC++ Runtime error (UNIX pid:23512) (uSerial &)0x83120 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x82ff0). Error occurred while executing task T (0x82ff0).

because in the call to t.mem from task uMain, the rendezvous terminates abnormally by raising an exception of type
E. As a result, uMain implicitly resumes an exception of type uSerial::RendezvousFailure concurrently at task t so
it knows the call did not complete and can take appropriate corrective action (see Section 4.10.2, p. 75). If the call
uRendezvousAcceptor() is uncommented, an exception of type uSerial::RendezvousFailure is not resumed at task t,
and task t restarts as if the rendezvous completed. A more complex version of this situation occurs when a blocked
call is aborted, i.e., before the call even begins. The following program:

#include <uC++.h>
_ThrowEvent E {};

_Task T {
uBaseTask &t;

public:
T(uBaseTask &t) : t(t) {}
void mem() {}

private:
void main() {

_Throw E() _At t;
_Accept(mem);

}
};

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 89

void uMain::main() {
T t(uThisTask());
try {

_Enable {
t.mem();

}
} catch(E &e) {
}

}

generates this error:

uC++ Runtime error (UNIX pid:23656) (uSerial &)0x83260 : Rendezvous failure in accepted call from task
uMain (0xffbef008) to mutex member of task T (0x83130). Error occurred while executing task T (0x83130).

because the blocked call to t.mem from task uMain is interrupted by the concurrent exception of type E. When the
blocked call from uMain is accepted, uMain immediately detects the concurrent exception and does not start the call.
As a result, uMain implicitly resumes an exception of type uSerial::RendezvousFailure concurrently at task t so it
knows the call did not occur and can take appropriate corrective action (see Section 4.10.2, p. 75).

The following program:

#include <uC++.h>
_Task T1 {

uCondition w;
public:

void mem() { w.wait(); }
private:

void main() { _Accept(mem); }
};

_Task T2 {
T1 &t1;
void main() { t1.mem(); }

public:
T2(T1 &t1) : t1(t1) {}

};

void uMain::main() {
T1 *t1 = new T1;
T2 *t2 = new T2(*t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:23856) (uCondition &)0x84410 : Waiting failure as task uMain (0xffbef008)
found blocked task T2 (0x8d470) on condition variable during deletion. Error occurred while executing task
T2 (0x8d470).

because the call to t1.mem blocks task t2 on condition queue w and then task t1 implicitly accepts its destructor when
its main terminates. As a result, when task uMain attempts to delete task t1, it finds task t2 still blocked on the condition
queue.

The following program:

90 CHAPTER 6. ERRORS

#include <uC++.h>
_ThrowEvent E {};

_Coroutine C {
void main() { _Throw E(); }

public:
void mem() { resume(); }

};
void uMain::main() {

C c;
c.mem(); // first call fails

}

generates this error:

uC++ Runtime error (UNIX pid:23979) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from resumed coroutine C (0x82970), which was terminated due to an unhandled
exception of type E. Error occurred while executing task uMain (0xffbef008).

because the call to c.mem resumes coroutine c and then coroutine c throws an exception it does not handle. As a result,
when the top of c’s stack is reached, an exception of type uBaseCoroutine::UnHandledException is raised at uMain,
since it last resumed c. A more complex version of this situation occurs when there is a resume chain and no coroutine
along the chain handles the exception. The following program:

#include <uC++.h>
_ThrowEvent E {};

_Coroutine C2 {
void main() { _Throw E(); }

public:
void mem() { resume(); }

};
_Coroutine C1 {

void main() {
C2 c2;
c2.mem();

}
public:

void mem() { resume(); }
};
void uMain::main() {

C1 c1;
c1.mem(); // first call fails

}

generates this error:

uC++ Runtime error (UNIX pid:24080) (uBaseCoroutine &)0xffbef008 : Unhandled exception in coroutine
uMain raised non-locally from coroutine C1 (0x82ec0), which was terminated due to a series of unhandled
exceptions – originally an unhandled exception of type E inside coroutine C2 (0x8acc0). Error occurred
while executing task uMain (0xffbef008).

because the call to c1.mem resumes coroutine c1, which creates coroutine c2 and call to c2.mem to resume it, and then
coroutine c2 throws an exception it does not handle. As a result, when the top of c2’s stack is reached, an exception of
type uBaseCoroutine::UnHandledException is raised at uMain, since it last resumed c.

6.2.3.2 Coroutine

Neither resuming to nor suspending from a terminated coroutines is allowed; a coroutine is terminated when its main
routine returns. The following program:

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 91

#include <uC++.h>
_Coroutine C {

void main() {}
public:

void mem() { resume(); }
};
void uMain::main() {

C c;
c.mem(); // first call works
c.mem(); // second call fails

}

generates this error:

uC++ Runtime error (UNIX pid:24169) Attempt by coroutine uMain (0xffbef008) to resume terminated
coroutine C (0x823a0). Possible cause is terminated coroutine’s main routine has already returned. Error
occurred while executing task uMain (0xffbef008).

because the first call to c.mem resumes coroutine c and then coroutine c terminates. As a result, when uMain attempts
the second call to c.mem, it finds coroutine c terminated. A similar situation can be constructed using suspend, but is
significantly more complex to generate, hence it is not discussed in detail.

Member suspend resumes the last resumer, and therefore, there must be a resume before a suspend can execute
(see Section 2.7.3, p. 17). The following program:

#include <uC++.h>
_Coroutine C {

void main() {}
public:

void mem() {
suspend(); // suspend before any resume

}
};
void uMain::main() {

C c;
c.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:24258) Attempt to suspend coroutine C (0x82390) that has never been
resumed. Possible cause is a suspend executed in a member called by a coroutine user rather than by the
coroutine main. Error occurred while executing task uMain (0xffbef008).

because the call to C::mem executes a suspend before the coroutine’s main member is started, and hence, there is no
resumer to reactivate. In general, member suspend is only called within the coroutine main or non-public members
called directly or indirectly from the coroutine main, not in public members called by other coroutines.

Two tasks cannot simultaneously execute the same coroutine; only one task can use the coroutine’s execution at a
time. The following program:

#include <uC++.h>
_Coroutine C {

void main() {
uThisTask().yield();

}
public:

void mem() {
resume();

}
};

92 CHAPTER 6. ERRORS

_Task T {
C &c;
void main() {

c.mem();
}

public:
T(C &c) : c(c) {}

};
void uMain::main() {

C c;
T t1(c), t2(c);

}

generates this error:

uC++ Runtime error (UNIX pid:24393) Attempt by task T (0x82ea0) to resume coroutine C (0x831e0) cur-
rently being executed by task T (0x83040). Possible cause is two tasks attempting simultaneous execution
of the same coroutine. Error occurred while executing task T (0x82ea0).

because t1’s thread first calls routine C::mem and then resumes coroutine c, where it yields the processor. t2’s threads
now calls routine C::mem and attempts to resume coroutine c but t1 is currently using c’s execution-state (stack). This
same error occurs if the coroutine is changed to a coroutine monitor and task t1 waits in coroutine c after resuming it:

#include <uC++.h>
_Cormonitor CM {

uCondition w;
void main() {

w.wait();
}

public:
void mem() {

resume();
}

};
_Task T {

CM &cm;
void main() {

cm.mem();
}

public:
T(CM &cm) : cm(cm) {}

};
void uMain::main() {

CM cm;
T t1(cm), t2(cm);

}

When a coroutine (or task) is created, there must be sufficient memory to allocate its execution state. The following
program:

#include <uC++.h>
unsigned int uMainStackSize() {

return 1000000000; // very large stack size for uMain
}
void uMain::main() {
}

generates this error:

uC++ Runtime error (UNIX pid:24848) Attempt to allocate 1000000000 bytes of storage for coroutine or
task execution-state but insufficient memory available. Error occurred while executing task uBootTask
(0x4d6b0).

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 93

because the declaration of uMain by the uBootTask fails due to the request for a 1000000000-byte stack for uMain.

As mentioned in Section 2.4, p. 10, the � C++ kernel provides no support for automatic growth of stack space for
coroutines and tasks. Several checks are made to mitigate problems resulting from lack of dynamic stack growth. The
following program:

#include <uC++.h>
void uMain::main() {

char x[uThisCluster().getStackSize()]; // array larger than stack space
verify();

}

generates this error:

uC++ Runtime error (UNIX pid:24917) Stack overflow detected: stack pointer 0x7a650 below limit 0x7a820.
Possible cause is allocation of large stack frame(s) and/or deep call stack. Error occurred while executing
task uMain (0xffbef008).

because the declaration of the array in uMain uses more than the current stack space.

The following program:

#include <uC++.h>
void uMain::main() {

{
char x[uThisCluster().getStackSize()]; // array larger than stack space
for (int i = 0; i < uThisCluster().getStackSize(); i += 1) {

x[i] =
�

a
�

; // write outside stack space
}

} // delete array
verify();

}

generates this error:

uC++ Runtime error (UNIX pid:24968) Stack corruption detected. Possible cause is corrupted stack frame
via overwriting memory. Error occurred while executing task uMain (0xffbef008).

because the declaration of the array in uMain uses more than the current stack space, and by writing into the array, the
current stack space is corrupted (and possibly another stack, as well).

6.2.3.3 Mutex Type

It is a restriction that a task must acquire and release mutex objects in nested (LIFO) order (see Section 2.8, p. 17).
The following program:

#include <uC++.h>
_Task T;

_Cormonitor CM {
T *t;
void main();

public:
void mem(T *t) { // task owns mutex object

CM::t = t;
resume(); // begin coroutine main

}
};

94 CHAPTER 6. ERRORS

_Task T {
CM &cm;
void main() {

cm.mem(this); // call coroutine monitor
}

public:
T(CM &cm) : cm(cm) {}
void mem() {

resume(); // restart task in CM::mem
}

};

void CM::main() {
t >mem(); // call back into task

}
void uMain::main() {

CM cm;
T t(cm);

}

generates this error:

uC++ Runtime error (UNIX pid:25043) Attempt to perform a non-nested entry and exit from multiple ac-
cessed mutex objects. Error occurred while executing task T (0x835f0).

because t’s thread first calls mutex routine CM::mem (and now owns coroutine monitor cm) and then resumes coroutine
cm, which now calls the mutex routine T::mem (t already owns itself). The coroutine cm resumes t from within T::mem,
which restarts in CM::mem (full coroutining) and exits before completing the nested call to mutex routine T::mem
(where cm is suspended). Therefore, the calls to these mutex routines do not terminate in LIFO order. The following
program is identical to the previous one, generating the same error, but the coroutine monitor has been separated into
a coroutine and monitor:

#include <uC++.h>
_Monitor M;
_Task T;

_Coroutine C {
M *m;
void main();

public:
void mem(M *m) {

C::m = m;
resume(); // begin coroutine main

}
};
_Monitor M {

C &c;
T *t;

public:
M(C &c) : c(c) {}
void mem1(T *t) { // task owns mutex object

M::t = t;
c.mem(this);

}
void mem2();

};

void C::main() {
m >mem2();

}
_Task T {

M &m;
C &c;
void main() {

m.mem1(this); // call monitor
}

public:
T(M &m, C &c) : m(m), c(c) {}
void mem() {

resume(); // restart task in C::mem
}

};
void M::mem2() {

t >mem(); // call back into task
}
void uMain::main() {

C c;
M m(c);
T t(m, c);

}

Ownership of a mutex object by a task applies through any coroutine executed by the task. The following program:

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 95

#include <uC++.h>
_Task T;

_Coroutine C {
T *t;
void main();

public:
void mem(T *t) {

C::t = t;
resume();

}
};

_Task T {
C &c;
void main() {

c.mem(this);
yield();

}
public:

T(C &c) : c(c) {}
void mem() {

resume();
}

};

void C::main() {
t >mem();

}
void uMain::main() {

C c;
T t1(c), t2(c);

}

generates this error:

uC++ Runtime error (UNIX pid:25216) Attempt by task T (0x83050) to activate coroutine C (0x833c0) cur-
rently executing in a mutex object owned by task T (0x83208). Possible cause is task attempting to logically
change ownership of a mutex object via a coroutine. Error occurred while executing task T (0x83050).

because t1’s thread first calls routine C::mem and then resumes coroutine c, which now calls the mutex routine T::mem.
t1 restarts in C::mem and returns back to T::main and yields the processor. t2’s threads now calls routine C::mem and
attempts to resume coroutine c, which would restart t2 via c in T::mem. However, this resumption would result in a
logical change in ownership because t2 has not acquired ownership of t1. This same error can occur if the coroutine is
changed to a coroutine monitor and task t1 waits in coroutine c after resuming it:

#include <uC++.h>
_Task T;

_Coroutine C {
T *t;
void main();

public:
void mem(T *t) {

C::t = t;
resume();

}
};

96 CHAPTER 6. ERRORS

_Task T {
uCondition w;
C &c;
void main() {

c.mem(this);
w.wait();

}
public:

T(C &c) : c(c) {}
void mem() {

resume();
}

};
void C::main() {

t >mem();
}
void uMain::main() {

C c;
T t1(c), t2(c);

}

It is incorrect storage management to delete any object if there are outstanding nested calls to the object’s members.
� C++ detects this case only for mutex objects. The following program:

#include <uC++.h>
class T;

_Monitor M {
public:

void mem(T *t);
};
class T {

M *m;
public:

void mem1() {
m = new M; // allocate object
m >mem(this); // call into object

}
void mem2() {

delete m; // delete object with pending call
}

};
void M::mem(T *t) {

t >mem2(); // call back to caller
}
void uMain::main() {

T t;
t.mem1();

}

generates this error:

uC++ Runtime error (UNIX pid:25337) Attempt by task uMain (0xffbef008) to call the destructor for uSerial
0x83278, but this task has outstanding nested calls to this mutex object. Possible cause is deleting a
mutex object with outstanding nested calls to one of its members. Error occurred while executing task
uMain (0xffbef008).

It is incorrect to perform more than one delete on a mutex object, which can happen if multiple tasks attempt
to perform simultaneous deletes on the same object. � C++ detects this case only for mutex objects. The following
program:

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 97

#include <uC++.h>
_Monitor M {

uCondition w;
public:

~M() {
w.wait(); // force deleting task to wait

}
};
_Task T {

M *m;
void main() {

delete m; // delete mutex object
}

public:
T(M *m) : m(m) {}

};
void uMain::main() {

M *m = new M; // create mutex object
T t(m); // create task
delete m; // also delete mutex object

}

generates this error:

uC++ Runtime error (UNIX pid:25431) Attempt by task T (0x82cd0) to call the destructor for uSerial
0x83a48, but this destructor was already called by task uMain (0xffbef008). Possible cause is multiple
tasks simultaneously deleting a mutex object. Error occurred while executing task T (0x82cd0).

6.2.3.4 Task

One task cannot yield another task; a task may only yield itself (see Section 2.12.2, p. 30). The following program:

#include <uC++.h>
_Task T {

void main() {}
};
void uMain::main() {

T t;
t.yield(); // yielding another task

}

generates this error:

uC++ Runtime error (UNIX pid:25487) Attempt to yield the execution of task T (0x827c0) by task uMain
(0xffbef008). A task may only yield itself. Error occurred while executing task uMain (0xffbef008).

One task cannot migrate another task; a task may only migrate itself for the same reason as for yielding (see
Section 2.12.2, p. 30). The following program:

#include <uC++.h>
_Task T {

void main() {}
};
void uMain::main() {

T t;
t.migrate(uThisCluster()); // migrating another task

}

generates this error:

uC++ Runtime error (UNIX pid:25576) Attempt to migrate task T (0x82750) to cluster userCluster (0x72f80).
A task may only migrate itself to another cluster. Error occurred while executing task uMain (0xffbef008).

98 CHAPTER 6. ERRORS

The destructor of a task cannot execute if the thread of that task has not finished (halted) because the destructor
deallocates the environment in which the task’s thread is executing. The following program:

#include <uC++.h>
_Task T {

uCondition w;
void main() {

_Accept(~T); // uMain invokes destructor
w.wait(); // T continues but blocks, which restarts uMain

}
};
void uMain::main() {

T t;
} // implicitly invoke T::~T

generates this error:

uC++ Runtime error (UNIX pid:25719) Attempt to delete task T (0x82900) that is not halted. Possible cause
is task blocked on a condition queue. Error occurred while executing task uMain (0xffbef008).

because the call to the destructor restarts the accept statement (see Section 2.9.2.3, p. 24), and the thread of t blocks on
condition w, which restarts the destructor. However, the destructor cannot cleanup without invalidating any subsequent
execution of task t.

6.2.3.5 Condition Variable

Only the owner of a condition variable can wait and signal on it (see Section 2.9.3.1, p. 25). The following program:

#include <uC++.h>
_Task T {

uCondition &w;
void main() {

w.wait();
}

public:
T(uCondition &w) : w(w) {}

};

void uMain::main() {
uCondition w;
T t(w);
w.wait();

}

generates this error:

uC++ Runtime error (UNIX pid:6605) Attempt to wait on a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task T (0x826c8).

because the condition variable w is passed from uMain to t, and then there is a race to wait on the condition. The error
message shows that uMain waited first so it became the condition owner, and then t’s attempt to wait fails. Changing
wait in T::main to signal generates a similar message with respect to signalling a condition not owned by mutex object
t. It is possible for one mutex object to create a condition and pass it to another, as long as the creator does not wait on
it before passing it.

The same situation can occur if a wait or signal is incorrectly placed in a nomutex member of a mutex type. The
following program:

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 99

#include <uC++.h>
_Task T {

uCondition w;
void main() { w.wait(); }

public:
_Nomutex void mem() {

w.signal();
}

};
void uMain::main() {

T t;
yield();
t.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:6502) Attempt to signal a condition variable for a mutex object not locked
by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex
object owning the variable. Error occurred while executing task uMain (0xffbef008).

because task t is first to wait on condition variable w due to the yield in uMain::main, and then uMain does not lock
mutex-object t when calling mem as it is nomutex. Only if uMain has t locked can it access any condition variable
owned by t. Changing signal in T::mem to wait generates a similar message with respect to waiting on a condition not
locked by mutex object uMain.

A condition variable must be non-empty before examining data stored with the front task blocked on the queue
(see Section 2.9.3.1, p. 25). The following program:

#include <uC++.h>
void uMain::main() {

uCondition w;
int i = w.front();

}

generates this error:

uC++ Runtime error (UNIX pid:2411) Attempt to access user data on an empty condition. Possible cause
is not checking if the condition is empty before reading stored data. Error occurred while executing task
uMain (0xffbef870).

because the condition variable w is empty so there is no data to return.

6.2.3.6 Accept Statement

An accept statement can only appear in a mutex member. The following program:

#include <uC++.h>
_Monitor M {

public:
void mem1() {}
_Nomutex void mem2() {

_Accept(mem1); // not allowed in nomutex member
}

};
void uMain::main() {

M m;
m.mem2();

}

generates this error:

uC++ Runtime error (UNIX pid:2159) Attempt to accept in a mutex object not locked by this task. Possible
cause is accepting in a nomutex member routine. Error occurred while executing task uMain (0xffbef008).

100 CHAPTER 6. ERRORS

6.2.3.7 Calendar

When creating an absolute time value using uTime (see Section 8.1, p. 113), the value must be in the range 00:00:00
UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, which is the UNIX start and end epochs. The following
program:

#include <uC++.h>
void uMain::main() {

uTime t(17);
}

generates this error:

uC++ Runtime error (UNIX pid:2243) Attempt to create uTime(year=1970, month=0, day=0, hour=0,
min=0, sec=-17, nsec=0), which exceeds range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January
19, 2038. Error occurred while executing task uMain (0xffbef008).

6.2.3.8 Locks

The argument for the uLock constructor (see Section 2.15.2, p. 37) must be 0 or 1. The following program:

#include <uC++.h>
void uMain::main() {

uLock l(3);
}

generates this error:

uC++ Runtime error (UNIX pid:2328) Attempt to initialize uLock 0x91030 to 3 that exceeds range 0-1. Error
occurred while executing task uMain (0xffbef008).

because the value 3 passed to the constructor of uLock is outside the range 0–1.

6.2.3.9 Cluster

A cluster cannot be deleted with a task still on it, regardless of what state the task is in (i.e., blocked, ready or running).
The following program:

#include <uC++.h>
_Task T {

void main() {}
};
void uMain::main() {

T *t = new T;
}

generates this error:

uC++ Runtime error (UNIX pid:2404) Attempt to delete cluster userCluster (0x82260) with task T (0x92770)
still on it. Possible cause is the task has not been deleted. Error occurred while executing task uBootTask
(0x5d6f0).

because the uBootTask happens to delete the user cluster (see Section 7.3, p. 105) after uMain::main terminates before
the dynamically allocated task t has terminated. Deleting the task associated with t before uMain::main terminates
solves the problem.

Similarly, a cluster cannot be deleted with a processor still located on it, regardless of what state the processor is
in (i.e., running or idle). The following program:

#include <uC++.h>
void uMain::main() {

uProcessor &p = *new uProcessor(uThisCluster());
}

generates this error:

uC++ Runtime error (UNIX pid:2488) Attempt to delete cluster userCluster (0x81770) with processor
0x91c80 still on it. Possible cause is the processor has not been deleted. Error occurred while execut-
ing task uBootTask (0x5cc00).

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 101

because the uBootTask deletes the user cluster (see Section 7.3, p. 105) after uMain::main terminates but the dynam-
ically allocated processor p is still on the user cluster. Deleting the processor associated with p before uMain::main
terminates solves the problem.

6.2.3.10 Heap
� C++ provides its own concurrent dynamic memory allocation routines. Unlike most C/C++ dynamic memory alloca-
tion routines, � C++ does extra checking to ensure that some aspects of dynamic memory usage are done correctly. The
following program:

#include <uC++.h>
void uMain::main() {

int *ip = (int *)1; // invalid pointer address
delete ip;

}

generates this error:

uC++ Runtime error (UNIX pid:2535) Attempt to free storage 0x1 outside the current heap range:0x5e468
to 0x91b78. Possible cause is invalid pointer. Error occurred while executing task uMain (0xffbef008).

because the value of pointer ip is not within the heap storage area, and therefore, cannot be deleted.
The following program:

#include <uC++.h>
void uMain::main() {

int *ip = new int[10];
delete &ip[5]; // not the start of the array

}

generates this error:

uC++ Runtime error (UNIX pid:2607) Attempt to free storage 0x91c14 with corrupted header. Possible
cause is duplicate free on same block or overwriting of header information. Error occurred while executing
task uMain (0xffbef008).

because the pointer passed to delete must always be the same as the pointer returned from new. In this case, the value
passed to delete is in the middle of the array instead of the start.

The following program:

#include <uC++.h>
_Task T {

void main() {}
public:

void mem() {}
};
void uMain::main() {

T *t = new T;
delete t;
t >mem(); // use deleted storage

}

generates this error:

uC++ Runtime error (UNIX pid:2670) (uSpinLock &)0x92a50.acquire() : internal error, attempt to multiply
acquire spin lock by same task. Error occurred while executing task uMain (0xffbef008).

because an attempt is made to use the storage for task t after it is deleted, which is always incorrect. This storage may
have been reallocated to another task and now contains completely different information. The problem is detected
inside of the � C++ kernel, where there are assertion checks for invalid pre- or post-conditions. In this case, the invalid
storage happened to trigger a check for a task acquiring a spin lock twice, which is never suppose to happen. Using
storage incorrectly can trigger other “internal errors” from the � C++ kernel.

As well, a warning message is issued at the end of a program if all storage is not freed.

102 CHAPTER 6. ERRORS

uC++ Runtime warning (UNIX pid:3914) : program terminating with 32(0x20) bytes of storage allocated
but not freed. Possible cause is unfreed storage allocated by the program or system/library routines called
from the program.

This is not an error; it is a warning. While this message indicates unfreed storage, it does not imply the storage is
allocated by the user’s code. Many system (e.g., exceptions) and library (e.g., string type and socket I/O) operations
allocate storage (such as buffers) for the duration of the program, and therefore, there is little reason to free the storage
at program termination. (Why cleanup and then terminate?) There is nothing that can be done about this unfreed
storage. Therefore, the value printed is only a guide in determining if all of a user’s storage is freed.

What use is this message? Any sudden increase of unfreed storage from some base value may be a strong indication
of unfreed storage in the user’s program. A quick check of the dynamic allocation can be performed to verify all user
storage is being freed.

6.2.3.11 I/O

There are many different I/O errors; only those related to the � C++ kernel are discussed. The following program:

#include <uC++.h>
void uMain::main() {

uThisCluster().select(1, 0, NULL);
}

generates this error:

uC++ Runtime error (UNIX pid:2962) Attempt to select on file descriptor -1 that exceeds range 0-1023.
Error occurred while executing task uMain (0xffbef008).

The following program:

#include <uC++.h>
void uMain::main() {

uThisCluster().select(1, NULL, NULL, NULL, NULL);
}

generates this error:

uC++ Runtime error (UNIX pid:3008) Attempt to select with a file descriptor set size of -1 that exceeds
range 0-1024. Error occurred while executing task uMain (0xffbef008).

6.2.3.12 Processor

The following program:

#include <uC++.h>
#include <uSemaphore.h>
void uMain::main() {

uSemaphore s(0);
s.P(); // block only thread => synchronization deadlock

}

generates this error:

uC++ Runtime error (UNIX pid:3110) No ready or pending tasks. Possible cause is tasks are in a synchro-
nization or mutual exclusion deadlock. Error occurred while executing task uProcessorTask (0x82740).

because the only thread blocks so there are no other tasks to execute, resulting in a synchronization deadlock. This
message also appears for the more complex form of deadlock resulting from mutual exclusion.

6.2.3.13 UNIX

There are many UNIX related errors, of which only a small subset are handled specially by � C++.
A common error in C++ programs is to generate and use an invalid pointer. This situation can arise because of an

incorrect pointer calculation, such as an invalid subscript. The following program:

6.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 103

#include <uC++.h>
void uMain::main() {

int *ip = NULL; // set address to 0

*ip += 1; // use the bad address
}

generates this error:

uC++ Runtime error (UNIX pid:3241) Attempt to address location 0x0. Possible cause is reading out-
side the address space or writing to a protected area within the address space with an invalid pointer or
subscript. Error occurred while executing task uMain (0xffbef008).

because the value of pointer ip is probably within the executable code, which is read-only, but an attempt to write is
occurring.

If a � C++ program is looping for some reason, it may be necessary to terminate its execution. Termination is
accomplished using a shell kill command, sending signal SIGTERM to the UNIX process. � C++ receives the termination
signal and attempts to shutdown the application, which is important in multikernel mode with multiple processors. The
following program:

#include <uC++.h>
#include <unistd.h> // getpid prototype
void uMain::main() {

kill(getpid(), SIGTERM); // send SIGTERM signal to program
}

generates this error:

uC++ Runtime error (UNIX pid:3315) Application interrupted by a termination signal. Error occurred while
executing task uMain (0xffbef008).

because the � C++ program sent itself a termination (SIGTERM) signal.

104 CHAPTER 6. ERRORS

Chapter 7

� C++ Kernel

The � C++ kernel is a library of classes and routines that provide low-level lightweight concurrency support on unipro-
cessor and multiprocessor computers running the UNIX operating system. On uniprocessors, parallelism is simulated
by rapid context switching at non-deterministic points so a programmer cannot rely on order or speed of execution.
Some of the following facilities only have an effect on multiprocessor computers but can be called on a uniprocessor
so that a program can be seamlessly transported between the two architectures.

The � C++ kernel does not call the UNIX kernel to perform a context switch or to schedule tasks, and uses shared
memory for communication. As a result, performance for execution of and communication among large numbers of
tasks is significantly increased over UNIX processes. The maximum number of tasks that can exist is restricted only by
the amount of memory available in a program. The minimum stack size for an execution state is machine dependent,
but can be as small as 256 bytes. The storage management of all � C++ objects and the scheduling of tasks on virtual
processors is performed by the � C++ kernel.

7.1 Pre-emptive Scheduling and Critical Sections
Care must be taken when writing threaded programs calling certain UNIX library routines that are not thread-safe. For
example, the UNIX random number generator rand maintains an internal state between successive calls and there is no
mutual exclusion on this internal state. Hence, one task executing the random number generator can be pre-empted and
the generator state can be modified by another task, which may result in problems with the generated random values
or errors. Therefore, when writing � C++ programs, always use the thread-safe versions of UNIX library routines, such
as rand_r to generate random numbers.

For some non-thread-safe UNIX library-routines, � C++ provides a thread-safe equivalent, such as abort/uAbort,
exit (see Section 6.2.2, p. 85), sleep, usleep, and the � C++ I/O library (see Chapter 3, p. 45).

7.2 Memory Management
In � C++, all user data is located in memory that is accessible by all kernel threads started by � C++. In order to make
memory management operations safe, the C++ memory management operators new and delete are indirectly redefined
through the C routines malloc and free to allocate and free memory correctly by multiple tasks. These memory
management operations provide identical functionality to the C++ and C equivalent ones.

7.3 Cluster
As mentioned in Section 2.3.1, p. 8, a cluster is a collection of � C++ tasks and processors; it provides a runtime
environment for execution. This environment controls the amount of parallelism and contains variables to affect how
coroutines and tasks behave on a cluster. Environment variables are used implicitly, unless overridden, when creating
an execution state on a cluster:

stack size is the default stack size, in bytes, used when coroutines or tasks are created on a cluster.

The variable(s) is either explicitly set or implicitly assigned a � C++ default value when the cluster is created. A cluster
is used in operations like task or processor creation to specify the cluster on which the task or processor is associated.

105

106 CHAPTER 7. � C++ KERNEL

After a cluster is created, it is the user’s responsibility to associate at least one processor with the cluster so it can
execute tasks.

The cluster interface is the following:

class uCluster {
public:

uCluster(unsigned int stacksize = uDefaultStackSize(), const char *name = "*unnamed*");
uCluster(const char *name);
uCluster(uBaseSchedule<uBaseTaskDL> &ReadyQueue,

unsigned int stacksize = uDefaultStackSize(), const char *name = "*unnamed*");
uCluster(uBaseSchedule<uBaseTaskDL> &ReadyQueue, const char *name = "*unnamed*");

const char *setName(const char *name);
const char *getName() const;
unsigned int setStackSize(unsigned int stacksize);
unsigned int getStackSize() const;

static const int readSelect;
static const int writeSelect;
static const int exceptSelect;
int select(int fd, int rwe, timeval *timeout = NULL);
int select(fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL);
int select(int nfds, fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL);

const uBaseTaskSeq &getTasksOnCluster();
const uProcessorSeq &getProcessorsOnCluster();

};

uCluster clus(8196, "clus") // 8K default stack size, cluster name is “clus”

The overloaded constructor routine uCluster has the following forms:

uCluster(unsigned int stacksize = uDefaultStackSize(), const char *name = "*unnamed*") – this form uses
the user specified stack size and cluster name (see Section 9.1, p. 127 for the first default value).

uCluster(const char *name) – this form uses the user specified name for the cluster and the current cluster’s
default stack size.

When a cluster terminates, it must have no tasks executing on it and all processors associated with it must be freed.
It is the user’s responsibility to ensure no tasks are executing on a cluster when it terminates; therefore, a cluster can
only be deallocated by a task on another cluster.

The member routine setName associates a name with a cluster and returns the previous name. The member routine
getName returns the string name associated with a cluster.

The member routine setStackSize is used to set the default stack size value for the stack portion of each execution
state allocated on a cluster and returns the previous default stack size. The new stack size is specified in bytes. For
example, the call clus.setStackSize(8000) sets the default stack size to 8000 bytes.

The member routine getStackSize is used to read the value of the default stack size for a cluster. For example, the
statement i = clus.getStackSize() sets i to the value 8000.

The overloaded member routine select works like the UNIX select routine, but on a per-task basis per cluster. That
is, all I/O performed on a cluster is managed by a poller task for that cluster (see Section 3.1, p. 45). In general, select
is used only in esoteric situations, e.g., when � C++ file objects are mixed with standard UNIX file objects on the same
cluster. These members return the total number of file descriptors set in all file descriptor masks, and each routine has
the following form:

select(int fd, int rwe, timeval *timeout = NULL) – this form is a shorthand select for a single file descriptor. The
mask, rwe, is composed of logically “or”ing flags readSelect, writeSelect, and exceptSelect. The timeout value
points to a maximum delay value, specified as a timeval, to wait for the I/O to complete. If the timeout pointer
is null, the select blocks until the I/O operation completes or fails. This form is more efficient than the next
forms with complete file descriptor sets, but handles only a single file.

7.4. PROCESSORS 107

select(fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL) – this form examines all I/O file descrip-
tors in the sets pointed to by rfd, wfd, and efd, respectively, to see if any of their file descriptors are ready for
reading, or writing, or have exceptional conditions pending. The timeout value points to a maximum delay
value, specified as a timeval, to wait for an I/O to complete. If the timeout pointer is null, the select blocks until
one of the I/O operations completes or fails.

select(int nfds, fd_set *rfd, fd_set *wfd, fd_set *efd, timeval *timeout = NULL) – same as above, except only the
first nfds I/O file descriptors in the sets are examined.

There does not seem to be any standard semantics action when multiple kernel threads access the same file de-
scriptor in select. Some systems wake all kernel threads waiting for the same file descriptor; others wake the kernel
threads in FIFO order of their request for the common file descriptor. � C++ adopts the former semantic and wakes all
tasks waiting for the same file descriptor. In general, this is not a problem because all � C++ file routines retry their I/O
operation, and only one succeeds in obtaining data (which one is non-deterministic).

Finally, it is impossible to precisely deliver select errors to the task that caused it. For example, if one task
in waiting for I/O on a file descriptor and another task closes the file descriptor, the UNIX select fails but with no
information about which file descriptor caused the error. Therefore, � C++ wakes up all tasks waiting on the select at
the time of the error and the tasks must retry their I/O operation. Again, all � C++ file routines retry their I/O operations
after waiting on select.

�
Unfortunately, UNIX does not provide adequate facilities to ensure that signals sent to wake up a

blocked UNIX process or kernel thread is always delivered. There is a window between sending a signal
and blocking using a UNIX select operation that cannot be closed. Therefore, the poller task has to wake
up once a second to deal with the rare event that a signal sent to wake it up is missed. This problem only
occurs when a task is migrating from one cluster to another cluster on which I/O is being performed.

�

The member routine getTasksOnCluster returns a list of all the tasks currently on the cluster. The member routine
getProcessorsOnCluster returns a list of all the processors currently on the cluster. These routines are useful for
profiling and debugging programs.

The free routine:

uCluster &uThisCluster();

is used to determine the identity of the current cluster a task resides on.

7.4 Processors
As mentioned in Section 2.3.2, p. 9, a � C++ virtual processor is a “software processor”; it provides a runtime environ-
ment for parallel thread execution. This environment contains variables to affect how thread execution is performed
on a processor. Environment variables are used implicitly, unless overridden, when executing threads on a processor:

pre-emption time is the default time, in milliseconds, to the next implicit yield of the currently executing task to
simulate non-deterministic execution (see Section 7.4.1, p. 109).

spin amount is the default number times the cluster’s ready queue is checked for an available task to execute before
the processor blocks (see Section 7.4.2, p. 110).

processors is the default number of processors created implicitly on a cluster.

The variables are either explicitly set or implicitly assigned a � C++ default value when the processor is created.
In � C++, a virtual processor is implemented as a kernel thread (possibly via a UNIX process) that is subsequently

scheduled for execution on a hardware processor by the underlying operating system. On a multiprocessor, kernel
threads are usually distributed across the hardware processors and so some execute in parallel. The maximum number
of virtual processors that can be created is indirectly limited by the number of kernel/processes the operating system
allows a program to create, as the sum of the virtual processors on all clusters cannot exceed this limit.

As stated previously, there are two versions of the � C++ kernel: the unikernel, which is designed to use a single
processor; and the multikernel, which is designed to use several processors. The interfaces to the unikernel and
multikernel are identical; the only difference is that the unikernel has only one virtual processor. In particular, in

108 CHAPTER 7. � C++ KERNEL

the unikernel, operations to increase or decrease the number of virtual processors are ignored. The uniform interface
allows almost all concurrent applications to be designed and tested on the unikernel, and then run on the multikernel
after re-linking.

The processor interface is the following:

class uProcessor {
public:

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin());
uProcessor(bool detached, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());
uProcessor(uCluster &cluster, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());
uProcessor(uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());

uClock &getClock() const;
uPid_t getPid() const;
uCluster &setCluster(uCluster &cluster);
uCluster &getCluster() const;
uBaseTask &getTask() const;
bool getDetach() const;
unsigned int setPreemption(unsigned int ms);
unsigned int getPreemption() const;
unsigned int setSpin(unsigned int spin);
unsigned int getSpin() const;
bool idle() const;

};

uProcessor proc(clus); // processor is attached to cluster clus

A processor can be non-detached or detached with respect to its associated cluster. A non-detached processor is auto-
matically/dynamically allocated and its storage is managed by the programmer. A detached processor is dynamically
allocated and its storage is managed by its associated cluster, i.e., the processor is automatically deleted when its
cluster is deleted.

The overloaded constructor routine uProcessor has the following forms:

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin()) – creates a non-
detached processor on the current cluster with the user specified time-slice and processor-spin duration (see
Section 9.1, p. 127 for the default values).

uProcessor(bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())
– creates a detached/non-detached processor on the current cluster with the user specified time-slice and
processor-spin duration (see Section 9.1, p. 127 for the default values). The indicator for detachment is false
for non-detached and true for detached.

uProcessor(uCluster &cluster, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())
– creates a non-detached processor on the specified cluster using the user specified time-slice and processor-
spin duration.

uProcessor(uCluster &cluster, bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin =
uDefaultSpin()) – creates a detached/non-detached processor on the specified cluster using the user specified
time-slice and processor-spin duration. The indicator for detachment is false for non-detached and true for
detached.

The member routine getClock) returns the clock used to control timing on this processor (see Section 8.4, p. 117).
The member routine getPid returns the current UNIX process id that the processor is associated with.
The member routine setCluster moves a processor from its current cluster to another cluster and returns the cur-

rent cluster. The member routine getCluster returns the current cluster the processor is associated with, and hence,
executing tasks for.

7.4. PROCESSORS 109

The member routine getTask returns the current task that the processor is executing.
The member routine getDetach returns if the processor is non-detached (false) or detached (true).
The member routine setPreemption is used to set the default pre-emption duration for a processor (see Sec-

tion 7.4.1) and returns the previous default pre-emption duration. The time duration between interrupts is specified
in milliseconds. For example, the call proc.setPreemption(50) sets the default pre-emption time to 0.05 seconds for
a processor. To turn pre-emption off, call proc.setPreemption(0). The member routine getPreemption is used to read
the current default pre-emption time for a processor. For example, the statement i = proc.getPreemption() sets i to the
value 50.

The member routine setSpin is used to set the default spin-duration for a processor (see Section 7.4.2) and returns
the previous default spin-duration. The spin duration is specified as the number of times the cluster’s ready queue is
checked for an available task to execute before the processor blocks. For example, the call proc.setSpin(500) sets the
default spin-duration to 500 checks for a processor. To turn spinning off, call proc.setSpin(0). The member routine
getSpin is used to read the current default spin-duration for a processor. For example, the statement i = proc.getSpin()
sets i to the value 500.

The member routine idle indicates if this processor is currently idle, i.e., the UNIX process has blocked because
there were no tasks to execute on the cluster it is associated with.

The free routine:

uBaseProcessor &uThisProcessor();

is used to determine the identity of the current processor a task is executing on.
The following are points to consider when deciding how many processors to create for a cluster. First, there is

no advantage in creating significantly more processors than the average number of simultaneously active tasks on the
cluster. For example, if on average three tasks are eligible for simultaneous execution, creating significantly more than
three processors does not achieve any execution speedup and wastes resources. Second, the processors of a cluster
are really virtual processors for the hardware processors, and there is usually a performance penalty in creating more
virtual processors than hardware processors. Having more virtual processors than hardware processors can result
in extra context switching of the underlying kernel threads or operating system processes (see Section 7.4.3) used
to implement a virtual processor, which is runtime expensive. This same problem can occur among clusters. If a
computational problem is broken into multiple clusters and the total number of virtual processors exceeds the number
of hardware processors, extra context switching occurs at the operating system level. Finally, a � C++ program usually
shares the hardware processors with other user programs. Therefore, the overall operating system load affects how
many processors should be allocated to avoid unnecessary context switching at the operating system level.

�
Changing the number of processors is expensive, since a request is made to the operating system to

allocate or deallocate kernel threads or processes. This operation often takes at least an order of magnitude
more time than task creation. Furthermore, there is often a small maximum number of kernel threads
and/or processes (e.g., 20–40) that can be created in a program. Therefore, processors should be created
judiciously, normally at the beginning of a program.

�

7.4.1 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both unikernel and multikernel. Each processor is periodically inter-
rupted in order to schedule another task to be executed. Note that interrupts are not associated with a task but with a
processor; hence, a task does not receive a time-slice and it may be interrupted immediately after starting execution
because the processor’s pre-emptive scheduling occurs and another task is scheduled. A task is pre-empted at a non-
deterministic location in its execution when the processor’s pre-emptive scheduling occurs. Processors on a cluster
may have different pre-emption times. The default processor time-slice is machine dependent but is approximately
0.1 seconds on most machines. The effect of this pre-emptive scheduling is to simulate parallelism. This simulation is
usually accurate enough to detect most situations on a uniprocessor where a program might be dependent on order or
speed of execution of tasks.

�
On many systems the minimum pre-emption time may be 10 milliseconds (0.01 of a second). Setting

the duration to an amount less than this simply sets the interrupt time interval to this minimum value.
�

�
The overhead of pre-emptive scheduling depends on the frequency of the interrupts. Furthermore,

because interrupts involve entering the UNIX kernel, they are relatively expensive if they occur frequently.

110 CHAPTER 7. � C++ KERNEL

An interrupt interval of 0.05 to 0.1 seconds gives adequate concurrency and increases execution cost by
less than 1% for most programs.

�

7.4.2 Idle Virtual Processors

When there are no ready tasks for a virtual processor to execute, the idle virtual processor has to spin in a loop or block
or both. In the � C++ kernel, an idle virtual processor spins for a user-specified number of checks of the cluster’s ready
queue before it blocks. During the spinning, the virtual processor is constantly checking for ready tasks, which would
be made ready by other virtual processors. An idle virtual processor is ultimately blocked so that machine resources
are not wasted. The reason that the idle virtual processor spins is because the block/unblock time can be large in
comparison to the execution of tasks in a particular application. If an idle virtual processor is blocked immediately
upon finding no ready tasks, the next executable task has to wait for completion of an operating system call to restart
the virtual processor. If the idle processor spins for a short period of time, any task that becomes ready during the
spin duration is processed immediately. Selecting a spin amount is application dependent and it can have a significant
effect on performance.

7.4.3 Blocking Virtual Processors

To ensure maximum parallelism, it is desirable that a task not execute an operation that causes the processor it is
executing on to block. It is also essential that all processors in a cluster be interchangeable, since task execution may
be performed by any of the processors of a cluster. When tasks or processors cannot satisfy these conditions, it is
essential that they be grouped into appropriate clusters in order to avoid adversely affecting other tasks or guarantee
correct execution. Each of these points is examined.

There are two forms of blocking that can occur:

heavy blocking which is done by the operating system on a virtual processor as a result of certain system requests
(e.g., I/O operations).

light blocking which is done by the � C++ kernel on a task as a result of certain � C++ operations (e.g., _Accept, wait
and calls to a mutex routine).

The problem with heavy blocking is that it removes a virtual processor from use until the operation is completed; for
each virtual processor that blocks, the potential for parallelism decreases on that cluster. In those situations where
maintaining a constant number of virtual processors for computation is desirable, tasks should block lightly rather
than heavily, which is accomplished by keeping the number of tasks that block heavily to a minimum and relegated
to a separate cluster. This can be accomplished in two ways. First, tasks that would otherwise block heavily instead
make requests to a task on a separate cluster which then blocks heavily. Second, tasks migrate to the separate cluster
and perform the operation that blocks heavily. This maintains a constant number of virtual processors for concurrent
computation in a computational cluster, such as the user cluster.

On some multiprocessor computers not all hardware processors are equal. For example, not all of the hardware
processors may have the same floating-pointunits; some units may be faster than others. Therefore, it may be necessary
to create a cluster whose processors are attached to these specific hardware processors. (The mechanism for attaching
virtual processors to hardware processors is operating system specific and not part of � C++. For example, the Dynix
operating system from Sequent provides a routine tmp_affinity to lock a UNIX process on a processor.) All tasks that
need to perform high-speed floating-point operations can be created/placed on this cluster. This segregation still allows
tasks that do only fixed-point calculations to continue on another cluster, potentially increasing parallelism, but not
interfering with the floating-point calculations.

� � C++ tasks are not implemented with kernel threads or operating system processes for two reasons.
First, kernel threads have a high runtime cost for creation and context switching. Second, an operating
system process is normally allocated as a separate address space (or perhaps several) and if the system
does not allow memory sharing among address spaces, tasks have to communicate using pipes and sockets.
Pipes and sockets are runtime expensive. If shared memory is available, there is still the overhead of
entering the operating system, page table creation, and management of the address space of each process.
Therefore, kernel threads and processes are called heavyweight because of the high runtime cost and
space overhead in creating a separate address space for a process, and the possible restrictions on the

7.4. PROCESSORS 111

forms of communication among them. � C++ provides access to kernel threads only indirectly through
virtual processors (see Section 2.3.2, p. 9). A user is not prohibited from creating kernel threads or
processes explicitly, but such threads are not administrated by the � C++ runtime environment.

�

112 CHAPTER 7. � C++ KERNEL

Chapter 8

Real-Time

Real-time programming is defined by the correctness of a program depending on both the accuracy of the result and
when the result is produced. The latter criterion is not present in normal programming. Without programming language
facilities to specify timing constraints, real-time programs are usually built in ad-hoc ways (e.g., cyclic executive), and
the likelihood of encountering timing errors increases through manual calculations. The introduction of real-time
constructs is a necessity for accurately expressing time behaviour, as well as providing a means for the runtime system
to evaluate whether any timing constraints have been broken. Furthermore, explicit time-constraint constructs can
drastically minimize coding complexity as well as analysis. Various programming language constructs for real-time
environments are discussed in [SD92, Mar78, LN88, KS86, KK91, ITM90, HM92, GR91, CD95, Rip90].

8.1 Time-Defined Delays
In the Ada programming language [Int95, Sha86], a time-defined delay is expressed by either of two statements:

delay delaytime
delay until delaytime

delay specifies a delay time relative to the start of execution of the statement (i.e., a duration), whereas delay until
specifies a delay to an absolute time in the future.

In � C++, time-defined delays is expressed by either of two statements:

_Timeout(duration); // parenthesis required
_Timeout(time); // parenthesis required

With a duration value, _Timeout works in the same way as Ada’s delay statement. That is, a task blocks for the span
of time indicated by the duration value; the task does not consume any resources during this period, nor does it respond
to any requests. A time value behaves the same as Ada’s delay until statement. That is, a task blocks until the specified
absolute time in the future. If the duration value be less than or equal to zero, the task does not block. Similarly, if the
time value has already occurred, the task does not block.

8.2 Duration and Time
The convenient manipulation of time is an essential characteristic in any time-constrained environment. Manipulating
time, in turn, yields another metric that expresses a span or duration of time. uDuration is a class whose instances
represent a span of time, e.g., subtracting two time values results in a difference that is a time duration (2:00 � 1:30 =
30 minute duration). The creation and manipulation of uDuration values are performed through the member routines
of class uDuration (see Figure 8.1).

Often, uDuration objects are created implicitly when manipulating time; however, specific values can be created
by specifying the seconds and nanoseconds in a uDuration’s constructor, e.g.:

uDuration x(4, 447398253); // 4 second & 447398253 nanosecond duration
uDuration y; // 0 duration
uDuration z(5); // 5 second duration

Arithmetic manipulation of uDuration objects is illustrated by:

113

114 CHAPTER 8. REAL-TIME

class uDuration {
public:

uDuration();
uDuration(long int sec);
uDuration(long int sec, long int nsec);

uDuration &operator =(uDuration op);
uDuration &operator+=(uDuration op);
uDuration &operator*=(long long int op);
uDuration &operator/=(long long int op);

long long int nanoseconds() const;
operator timeval() const;
operator timespec() const;

}; // uDuration

uDuration operator (uDuration op);
uDuration operator (uDuration op1, uDuration op2);
uDuration operator+(uDuration op);
uDuration operator+(uDuration op1, uDuration op2);
uDuration operator*(uDuration op1, long long int op2);
uDuration operator*(long long int op1, uDuration op2);
uDuration operator/(uDuration op1, long long int op2);
long long int operator/(uDuration op1, uDuration op2);
bool operator>(uDuration op1, uDuration op2);
bool operator<(uDuration op1, uDuration op2);
bool operator>=(uDuration op1, uDuration op2);
bool operator<=(uDuration op1, uDuration op2);
bool operator==(uDuration op1, uDuration op2);
bool operator!=(uDuration op1, uDuration op2);
ostream &operator<<(ostream &os, const uDuration op);

Figure 8.1: Duration Class

uDuration x, y, z;
int n;

x = y + z; // add two uDurations producing a uDuration
x = y z; // subtract two uDurations producing a uDuration
x = y * n; // multiply a uDuration n times
x = n * y; // multiply a uDuration n times
x = y / n; // divide a uDuration by n
timeval t1 = x; // convert to UNIX time value (seconds, microseconds)
timespec t2 = x; // convert to UNIX time value (seconds, nanoseconds)

In addition, relational comparison operators are defined for uDuration objects.
uTime is a class, whose instance represents an absolute time. Time can be specified using some combination of

year, month, day, hour, minute, second, and nanosecond in UTC. It is important to note that a time value must be
in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, which is the UNIX start and end
epochs. The creation and manipulation of uTime values are performed through the member routines of class uTime
(see Figure 8.2).

The overloaded constructor routines uTime provide a choice of specifying a time value. The parameters have the
following meanings:

year – a year greater than or equal to 1970 and less than or equal to 2038.

month – a number between 0 and 11 inclusive, where 0 represents January and 11 represents December. The
default value for a constructor without this argument is 0.

8.3. TIMEOUT OPERATIONS 115

class uTime {
public:

uTime();
uTime(long int sec);
uTime(long int sec, long int nsec);
uTime(int min, int sec, long int nsec);
uTime(int hour, int min, int sec, long int nsec);
uTime(int day, int hour, int min, int sec, long int nsec);
uTime(int month, int day, int hour, int min, int sec, long int nsec);
uTime(int year, int month, int day, int hour, int min, int sec, long int nsec);

uTime &operator =(uDuration op);
uTime &operator+=(uDuration op);
long long int nanoseconds() const;
operator timeval() const;
operator timespec() const;

}; // uTime

uDuration operator (uTime op1, uTime op2);
uTime operator (uTime op1, uDuration op2);
uTime operator+(uTime op1, uDuration op2);
uTime operator+(uDuration op1, uTime op2);
bool operator>(uTime op1, uTime op2);
bool operator<(uTime op1, uTime op2);
bool operator>=(uTime op1, uTime op2);
bool operator<=(uTime op1, uTime op2);
bool operator==(uTime op1, uTime op2);
bool operator!=(uTime op1, uTime op2);
ostream &operator<<(ostream &os, const uTime op);

Figure 8.2: Time Class

day – a number between 0 and 30 inclusive, where 0 represents the first day of the month and 30 the last day. The
default value for a constructor without this argument is 0.

hour – a number between 0 and 23 inclusive, where 0 represents 12:00am and 23 represents 11:00pm. The default
value for a constructor without this argument is 0.

min – a number between 0 and 59 inclusive, where 0 is the first minute of the hour and 59 the last. The default
value for a constructor without this argument is 0.

sec – a number between 0 and 59 inclusive, where 0 is the first second of the minute and 59 the last.

nsec – a number between 0 and 999999999 inclusive, where 0 is the first nanosecond of the second and 999999999
the last.

It is permissible to exceed the logical ranges for the time components; any excess is accumulative, e.g., the following
declarations are valid:

uTime t1(0,48,0,60,1000000000); // 1970 Jan 3 0:01:01:000000000 (GMT)
uTime t2(818227413, 0); // 1995 Dec 6 05:23:33:000000000 (GMT)

As for uDuration values, arithmetic and logical operations may be performed on uTime values. As well, mixed
mode operations are possible involving durations and time. A duration may be added to or subtracted from a time to
yield a new time; two times can be subtracted from each other producing a duration.

8.3 Timeout Operations
It is undesirable to have operations that might block indefinitely. Two such common operations are waiting for an
accepted call to occur and waiting for I/O to complete. In order to mitigate this problem, both these operations provide
timeout facilities, which terminates the operation after a certain period of time.

116 CHAPTER 8. REAL-TIME

8.3.1 Accept

The _Accept statement is extended to allow the specification of a timeout value. As mentioned briefly in (Section 8.1,
p. 113, the simple form of the _Timeout statement is:

_When (conditional-expression) // optional guard
_Timeout(duration or time value) // optional timeout clause

A _When guard is considered true if it is omitted or its conditional-expression evaluates to non-zero. Before the
_Timeout statement is executed, the guard must be true.

The extended form of the _Accept statement may use the _Timeout clause, e.g.:

_When (conditional-expression) // optional guard
_Accept(mutex-member-name-list)

statement // statement
. . .

. . .
. . .

else _When (conditional-expression) // optional guard
_Timeout(duration or time) // optional timeout clause

statement // statement

The _Timeout clause and a terminating else clause (see Section 2.9.2.1, p. 22) cannot be used in the same _Accept
statement, and the _Timeout clause must be the last clause in a _Accept statement. If a _Accept clause can be
accepted immediately, the statement behaves exactly like a normal _Accept statement. If no _Accept clause can be
accepted immediately and the optional guard on the _Timeout statement is true, the task only remains accept blocked
until either a call arrives to an accepted member or the specified delay expires. If a call to an appropriate member
occurs before the delay value expires, the _Accept statement behaves normally. If the delay expires, the acceptor is
removed from the acceptor/signalled stack, restarts, and executes the statement associated with the _Timeout clause.

�
WARNING: Beware the following possible syntactic confusion with the timeout clause:

_Accept(mem); _Accept(mem);
_Timeout(uDuration(1, 0)); else _Timeout(uDuration(1, 0));

The left example accepts a call to member mem and then delays for 1 second. The right example accepts
a call to member mem or times out in 1 second. The left example is two separate accept statements, while
the right example is a single accept statement. As well, it is possible to write an accept statement which
appears to have both a terminating else and a timeout clause:

_Accept(mem1);
_When(c1) else _When(c2) _Timeout(uDuration(1, 0));

However, this example is actually two separate statements, an accept and a timeout, bracketed as follows:

_Accept(mem1);
_When(c1) else {

_When(c2) _Timeout(uDuration(1, 0));
}

�

8.3.2 I/O

Similarly, timeouts can be set for certain I/O operations that block waiting for an event to occur (see details in Ap-
pendix C.5.2, p. 153). Only a duration is allowed as a timeout because a relationship between absolute time and I/O
seems unlikely. A pointer to the duration value is used so it is possible to distinguish between no timeout value (NULL
pointer) and a zero-timeout value. The former usually means to wait until the event occurs (i.e., no timeout), while
the latter can be used to poll by trying the operation and returning immediately if the event has not occurred. The I/O
operations that can set timeouts are read, readv, write, writev, send, sendto, sendmsg, recv, recvfrom and readmsg. If
the specified I/O operation has not completed when the delay expires, the I/O operation fails by throwing an exception.
The exception types are ReadTimeout for read, readv, recv, recvfrom and readmsg, and WriteTimeout for write, writev,
send, sendto and sendmsg, respectively. For example, in:

8.4. CLOCK 117

try {
uDuration d(3, 0); // 3 second duration
fa.read(buf, 512, &d);
// handle successful read

} catch(uFileIO::ReadTimeout) {
// handle read failure

}

the read operation expires after 3 seconds if no data has arrived.
As well, a timeout can be set for the constructor of a uSocketAccept and uSocketClient object, which implies that if

the acceptor or client has not made a connection when the delay expires, the declaration of the object fails by throwing
an exception (see details in Appendix C.5.4, p. 156). For example, in:

try {
uDuration d(60, 0); // 60 second duration
uSocketAccept acceptor(sockserver, &d); // accept a connection from a client
// handle successful accept

} catch(uSocketAccept::OpenTimeout) {
// handle accept failure

} // try

See, also, the server examples in Appendix C.5, p. 151.

8.4 Clock
A clock defines an absolute time and is used for interrogating the current time. Multiple clocks can exist; each one can
be set to a different time. In theory, all clocks tick together at the lowest clock resolution available on the computer.

The type uClock creates a clock object, and is defined:

class uClock {
public:

uClock();
uClock(uTime adj);
void resetClock();
void resetClock(uTime adj);
uTime getTime();
void getTime(int &year, int &month, int &day, int &hour, int &minutes,

int &seconds, long int &nsec);
static void convertTime(uTime time, int &year, int &month, int &day, int &hour, int &minutes,

int &seconds, long int &nsec);
}; // uClock

The overloaded constructor routine uClock has the following forms:

uClock() – creates a clock as a real-time clock running at the same time as the underlying virtual process.

uClock(uTime adj) – creates a clock as a virtual clock starting at time adj.

The overloaded member routine resetClock resets the kind of clock between real-time and virtual, and each routine
has the following form:

resetClock() – this form sets the clock to a real-time clock, so it returns the current time of the underlying virtual
processor.

resetClock(uTime adj) – this form sets the clock to a virtual clock starting at time adj.

The overloaded member routine getTime returns the current time, and each routine has the following form:

getTime() – this form returns the current time as a uTime value, i.e., in nanoseconds from the start of the UNIX
epoch.

getTime(int &year, int &month, int &day, int &hour, int &minutes, int &seconds, long int &nsec) – this form re-
turns the current time broken up into the traditional non-fixed radix units of time.

118 CHAPTER 8. REAL-TIME

The static member routine convertTime converts the specified time in nanoseconds from the start of the UNIX
epoch into a traditional non-fixed radix units of time.

As mentioned, each virtual processor has its own real-time clock. The current time is available from a virtual
processor via the call uThisProcessor().getClock().getTime(); hence, it is unnecessary to create a clock to get the
current time.

8.5 Periodic Task

Without a programming language construct to specify periodicity, and without programming language facilities to
express time, it is almost impossible to accurately express time specifications within a program. Specifying a periodic
task in a language without proper time constructs can introduce catastrophic inaccuracies. For example, in:

1 for (; ;) {
2 // periodic work
3 uDuration DelayTime = NextTime CurrentTime();
4 _Timeout(DelayTime);
5 }

if the task is context-switched after executing line 3 (or context-switched after the call to CurrentTime in line 3), the
DelayTime would be inaccurate. As a result, the blocking time of the program is erroneous.

The above problem can be eliminated by specifying an absolute time to _Timeout (specifying NextTime as the
parameter to _Timeout). However, with this form of periodic task specification, it is infeasible to specify other forms
of deadlines. Ada only supports the periodic task specification using delays, and the system guarantees a periodic task
delays for a minimum time specified in DelayTime, but makes no guarantee as to when the periodic task actually gets
to execute [BP91]. As a result, a task can request to block for 10 seconds (and Ada guarantees it blocks for at least 10
seconds), but end up executing 20 seconds later.

To circumvent this problem, � C++ provides a periodic task. The general form of the periodic task type is the
following:

_PeriodicTask task-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

Like a task, a periodic task type has one distinguished member, named main, in which the new thread starts execution.
If not derived from some other periodic task type, each periodic task type is implicitly derived from the task type
uPeriodicBaseTask, e.g.:

_Task task-name : public uPeriodicBaseTask {
. . .

};

where the interface for the base class uPeriodicBaseTask is:

8.6. SPORADIC TASK 119

_Task uPeriodicBaseTask {
protected:

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration period;

public:
uPeriodicBaseTask(uDuration period, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uEvent firstActivateEvent,

uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getPeriod() const;
uDuration setPeriod(uDuration period);

};

A periodic task starts by one of two mechanisms. The first is by specifying a start time, FirstActivateT, at which
the periodic task begins execution. The second is by specifying an event, FirstActivateE (an interrupt), upon receipt the
event the periodic task begins execution. If both start time and event are specified, the task starts either on receipt of an
event or when the specified time arrives, whichever comes first. If neither time nor event are specified, the periodic task
starts immediately. An end time, EndTime, may also be specified. When the specified end time occurs, the periodic
task halts after execution of the current period. A deadline, Deadline, may also be specified. A deadline is expressed
as the duration from the beginning of a task’s period by which its computation must be finished. A zero argument
for any of the parameters indicates the task is free from the constraints represented by the parameter (the exception is
Period, which cannot have a zero argument). For example, if the FirstActivate parameter is zero, the task is scheduled
for initial execution at the next available time it can be accommodated. Finally, the cluster parameter specifies which
cluster the task should be created in. Should this parameter be omitted, the task is created on the current cluster.

An example of a periodic task declaration that starts at a specified time and executes indefinitely (without any
deadline constraints) is:

_PeriodicTask task-name {
void main() { periodic task body }

public:
task-name(uDuration period, uTime time) : uPeriodicBaseTask(period, time, 0, 0) { };

};

The task body, i.e., routine main, is implicitly surrounded with a loop that performs the task body periodically. As a
result, terminating the task body requires a return (or the use of an end time); falling off the end of the main routine
does not terminate a periodic task.

8.6 Sporadic Task

A sporadic task is similar to a periodic task, except there is a minimum duration between executions instead of a
fixed period. In the declaration of a sporadic task, this minimum duration is specified as a frame. It is the user’s
responsibility to ensure the execution does not exceed the specified minimum duration (i.e., frame); otherwise, the
scheduler cannot ensure correct execution. The reason the scheduler cannot automate this process, as it does for
periodic tasks, is because of the unpredictable nature of the inter-arrival time of sporadic tasks.

In � C++, a sporadic task is similar to a periodic task. A _SporadicTask task type, if not derived from some other
sporadic task type, is implicitly derived from the task type uSporadicBaseTask, e.g.:

120 CHAPTER 8. REAL-TIME

_Task uSporadicBaseTask {
protected:

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration frame;

public:
uSporadicBaseTask(uDuration frame, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uEvent firstActivateEvent,

uTime endTime, uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getFrame() const;
uDuration setFrame(uDuration frame);

};

8.7 Aperiodic Task
An aperiodic task has a non-deterministic start pattern. As a result, aperiodic tasks should only be used in soft real-time
applications.

In � C++, an aperiodic task is similar to a periodic task. A _RealTimeTask task type, if not derived from some
other aperiodic task type, is implicitly derived from the task type _RealTimeTask, e.g.:

_Task uRealTimeBaseTask {
protected:

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;

public:
uRealTimeBaseTask(uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uTime endTime, uDuration deadline,

uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uEvent firstActivateEvent, uTime endTime, uDuration deadline,

uCluster &cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster &cluster = uThisCluster());
uDuration getDeadline() const;
uDuration setDeadline(uDuration deadline);

};

8.8 Priority Inheritance Protocol
The priority-inheritance protocol attacks the problem of priority inversion, where a high-priority task waits while
lower-priority tasks prevent it from executing. Rajkumar proposed the basic priority-inheritance protocol [RSL88,
SRL90, Raj91], which puts a bound on the occurrence of priority inversion. The solution is to execute a critical section
at the priority of the highest blocked task waiting to enter it. The basic priority-inheritance protocol bounds the time
priority inversion occurs: should there be � lower-priority tasks in the system, and the � lower-priority tasks access� distinct critical sections, a task can be blocked by at most ���������	�
��� critical sections. Despite this bound, the
blocking duration for a task can still be significant, however. Suppose at time �� , a low-priority task � � arrives and
locks monitor �� . At time � � , a medium priority task � � arrives, pre-empts � � , and locks monitor � � . At time � � , a
high-priority task �� arrives, needing to sequentially access both monitors �� and � � . Since both monitors are locked
by two lower-priority tasks, �
 must wait for the duration of two critical sections (till � � is released by � � , then, ��
is released by � �). This problem is known as chain blocking. Finally, this priority-inheritance protocol does not deal
with the problem of deadlock.

8.9. REAL-TIME SCHEDULING 121

In � C++, tasks wait for entry into a mutex object on a prioritized-entry queue. More specifically, each of the mutex
object’s member routines have an associated prioritized-entry queue. When the mutex object becomes unlocked, the
next task that enters is the one with the highest priority among all the entry queues. Should a mutex object be locked
and a higher-priority task arrives, the current task executing inside the mutex object “inherits” the priority of the
highest-priority task awaiting entry. This semantics ensures the task inside the mutex object can only be interrupted by
a higher-priority task, allowing the task in the mutex object to complete and leave as soon as possible, which speeds
entry of a waiting higher-priority task.

Condition variables and their associated queues of waiting tasks are also a fundamental part of mutex objects.
Signalling a condition variable makes the highest-priority task on the queue eligible to run. In � C++, the signaller
continues execution after signalling, at the priority of the highest-priority task awaiting entry to the mutex object. As
well, the signalled task is given preference over other tasks awaiting entry to the mutex object. Therefore, the signalled
task is the next to execute in the mutex object, regardless of whether there are higher-priority tasks waiting in the entry
queues. This behaviour, in turn, creates the possibility of priority inversion. Should a high-priority task be awaiting
entry to the mutex object, and a lower-priority task executing in the mutex object signals a condition queue whose
most eligible task has a lower priority than a task awaiting entry to the mutex object, priority inversion results. Hence,
the semantics of � C++ mutex objects increases the original algorithm’s bound for priority inversion by the amount it
takes to complete the execution of all the tasks in the signalled stack.

Finally, in � C++, tasks running inside a mutex object have the additional capability of specifically accepting any
one of the mutex member routines. This capability also brings about the possibility of bypassing higher-priority tasks
waiting on other entry queues. When a member routine is accepted, the acceptor is moved to the signalled stack,
thus causing the acceptor to block; the highest-priority task waiting on the accepted member routine then executes.
When a task leaves a mutex object, the next task that executes is selected first from the signalled stack not the entry
queues. Thus, the amount of time when priority inversion can take place when accepting specific member routines is
unbounded, since tasks can continually arrive on a member routine’s entry queue, and tasks executing in the mutex
object can continually accept the same specific member routine.

8.9 Real-Time Scheduling

The notion of priority becomes a crucial tool for implementing various forms of scheduling paradigms [AGMK94,
BW90, Gol94]. In general, the term priority has no single meaning. The priority of a task may signify its logical
importance to a programmer, or may simply be a property determined by its periodic characteristics, as is the case
with certain scheduling algorithms.

In � C++, the notion of priority simply determines the order by which a set of tasks executes. As far as the real-time
system is concerned, the ready task with the highest priority is the most eligible task to execute, with little or no
regard for the possible starvation of lower-priority ready tasks. This form of scheduling is referred to as a prioritized
pre-emptive scheduling.

Each task’s priority can be redefined and queried by the routines provided from the following abstract class (dis-
cussed further in the next section):

template<class Node> class uBaseSchedule {
protected:

uBaseTask &getInheritTask(uBaseTask &task) const;
int getActivePriority(uBaseTask &task) const;
int setActivePriority(uBaseTask &task1, uBaseTask &task2);
int getBasePriority(uBaseTask &task) const;
int setBasePriority(uBaseTask &task, int priority);

}; // uBaseScheduleFriend

Scheduler objects inherit from uBaseSchedule to use these routines, not replace them. These routines provide suffi-
cient information about the dynamic behaviour of tasks on a cluster to schedule them in various ways.

To provide the facilities for implementing various priority-changing scheduling algorithms (such as priority in-
heritance), a � C++ task has two priorities associated with it: a base priority and an active priority. It is up to the
scheduler implementor or programmer to set the appropriate priority values, or to determine whether the base priority
or the active priority is the priority utilized in scheduling tasks, if used at all.1

1 � C++ sets the base and the active priority of a task to a uniform default value, if no other priority is specified.

122 CHAPTER 8. REAL-TIME

The member routine getInheritTask returns the task that this task inherited its current active priority from or NULL.
The member routines getActivePriority and setActivePriority read and write a task’s active priority, respectively. The
member routines getBasePriority and setBasePriority read and write a task’s base priority, respectively.

A task’s priority can be used for more than just determining which task executes next; priorities can also dictate the
behaviour of various synchronization primitives such as semaphores and monitors [BW90]. � C++ monitors have been
extended so that entry queues (see Section 2.9.1, p. 21) are prioritized.2 The highest-priority task that calls into a mon-
itor always enters the monitor first, unless a particular entry queue is explicitly accepted (see Section 2.9.2.1, p. 22),
in which case, the highest-priority task in the particular entry queue executes. Condition queues (see Section 2.9.3.1,
p. 25) within a monitor are also prioritized: signaling a condition queue schedules the highest-priority task waiting on
the queue. Thus, both the monitor entry queues and the condition queues are prioritized, with FIFO used within each
priority level. The current implementation provides 32 priority levels. Support for more or less priority levels can be
implemented (see Section 8.10).

If an application is not real-time, all tasks are assigned an equal, default priority level. Thus, all tasks have one
active priority, and the scheduling is FIFO.

8.10 User-Supplied Scheduler

One of the goals of real-time in � C++ is to provide a flexible system, capable of being adapted to various real-time
environments and applications. The wide availability of various real-time scheduling algorithms, coupled with each
algorithm’s suitability for different forms of real-time applications, makes it essential that the language and runtime
system provide as few restrictions as possible on which algorithms may be utilized and implemented.

Scheduling is the mechanism by which the next task to run is chosen from a set of runnable tasks. However,
this selection mechanism is closely tied to the data structure representing the set of runnable tasks. In fact, the data
structure containing the set of runnable tasks is often designed with a particular scheduling algorithm in mind.

To provide a flexible scheduler, the ready “queue”3 is packaged as an independent entity – readily accessible and
replaceable by a scheduler designer. Consequently, the rules and mechanisms by which insertion and removal take
place from the ready data-structure is completely up to the implementor.

A ready data-structure is generic in the type of nodes stored in the structure and must inherit from the abstract
class:

template<class Node> class uBaseSchedule {
public:

virtual void add(Node *node) = 0;
virtual Node *pop() = 0;
virtual bool empty() const = 0;
virtual bool checkPriority(Node &owner, Node &calling) = 0;
virtual void resetPriority(Node &owner, Node &calling) = 0;
virtual void addInitialize(uSequence<uBaseTaskDL> &taskList) = 0;
virtual void removeInitialize(uSequence<uBaseTaskDL> &taskList) = 0;
virtual void rescheduleTask(uBaseTaskDL *taskNode, uBaseTaskSeq &taskList) = 0;

};

The � C++ kernel uses the routines provided by uBaseSchedule to interact with the user-defined ready queue.4 A user
can construct different scheduling algorithms by modifying the behaviour of member routines add and pop, which add
and remove tasks from the ready queue, respectively. To implement a dynamic scheduling algorithm, an analysis of
the set of runnable tasks is performed for each call to add and/or pop by the kernel; these routines alter the priorities
of the tasks accordingly. The member routine empty returns true if the ready queue is empty and false otherwise. The
member routine checkPriority provides a mechanism to determine if a calling task has a higher priority than another
task, which is used to compare priorities in priority changing protocols, such as priority inheritance. Its companion
routine resetPriority performs the same check, but also raises the priority of the owner task to that of the calling task
if necessary. addInitialize is called by the kernel whenever a task is added to the cluster, and removeInitialize is called
by the kernel whenever a task is deleted from the cluster. In both cases, a pointer to the ready queue for the cluster

2A task’s active priority is utilized by a � C++ monitor to determine a task’s priority value
3The term “ready queue” is no longer appropriate because the data structure may not be a queue.
4Operating systems such as Amoeba [TvRvS

�

90], Chorus [RAA
�

88], and Apertos [Yok92] employ a similar mechanism by which the kernel
utilizes external modules to modify its behaviour.

8.11. REAL-TIME CLUSTER 123

is passed as an argument so it can be reorganized if necessary. The type uSequence<uBaseTaskDL> is the type of
a system ready queue (see Appendix B, p. 135 for information about the uSequence collection). The list node type,
uBaseTaskDL, stores a reference to a task, and this reference can be retrieved with member routine get:

class uBaseTaskDL : public uSeqable {
public:

uBaseTaskDL(uBaseTask &_task) : _task(_task) {}
uBaseTask &task() const;

}; // uBaseTaskDL

Note, adding (or deleting) tasks to (or from) a cluster is not the same as adding or popping tasks from the ready queue.
With a static scheduling algorithm, for example, task-set analysis is only performed upon task creation, making the
addInitialize function an ideal place to specify such analysis code. The member routine rescheduleTask is used to
recalculate the priorities of the tasks on a cluster based on the fact that a given task, taskNode, may have changed
some of its scheduling attributes.

8.11 Real-Time Cluster
A real-time cluster behaves just like a normal � C++ cluster, except a real-time cluster can have a special ready data-
structure associated with it (the ready data-structure, in turn, has a scheduling or task-dispatching policy associated
with it). The ready data-structure must inherit from the uBaseSchedule class, however, and passed as an argument
when creating a real-time cluster. A real-time cluster has the following constructors:

class uRealTimeCluster : public uCluster {
public:

uRealTimeCluster(uBaseSchedule<uBaseTaskDL> &rq, int size = uDefaultStackSize(),
const char *name = "");

uRealTimeCluster(uBaseSchedule<uBaseTaskDL> &rq, const char *name);
~uRealTimeCluster() {};

};

8.11.1 Deadline Monotonic Scheduler

The deadline monotonic scheduling algorithm is an example of a task-dispatching policy requiring a special ready
data-structure, which can be plugged into a real-time cluster. The underlying ready data-structure for the deadline
monotonic implementation is a prioritized ready-queue, with support for 32 priority levels. The add routine adds a
task to the ready-queue in a FIFO manner within a priority level. The pop routine returns the most eligible task with
the highest priority from the ready-queue. Both add and pop utilize a constant-time algorithm for the location of the
highest-priority task. Figure 8.3 illustrates this prioritized ready-queue.

The addInitialize routine contains the heart of the deadline monotonic algorithm. In addInitialize, each task in the
ready-queue is examined, and tasks are ordered in increasing order by deadline. Priorities are, in turn, assigned to
every task. With the newly assigned priorities, the ready queue is re-evaluated, to ensure it is in a consistent state. As
indicated in Section 8.10, this routine is usually called only by the kernel. If a task is removed from the cluster, the
relative order of the remaining tasks is unchanged; hence, the task is simply deleted without a need to re-schedule.

A sample real-time program is illustrated in Figure 8.4, p. 125. To utilize the deadline-monotonic algorithm
include header file uDeadlineMonotonic.h. In the example, the creation of the real-time scheduler and cluster is done
at the beginning of uMain::main. Note, the argument passed to the constructor of uRealTimeCluster is an instance of
uDeadlineMonotonic, which is a ready data-structure derived from uBaseSchedule.

The technique used to ensure that the tasks start at a critical instance is not to associate a processor with the cluster
until after all tasks are created and scheduled on the cluster. As each task is added to the cluster addInitialize is called,
and cluster’s task-set is analyzed and task priorities are (re)assigned. After priority assignment, the task is added to the
ready queue, and made eligible to execute. Only when all tasks are created is a processor finally associated with the
real-time cluster. This approach ensures that when the processor is put in place, the task priorities are fully determined,
and the critical instant is ensured.

124 CHAPTER 8. REAL-TIME

Priority 0

Priority 31 Task

Priority 30

Priority 2

Priority 1

Figure 8.3: Deadline Monotonic Ready-Queue

8.11. REAL-TIME CLUSTER 125

#include<uC++.h>
#include<uDeadlineMonotonic.h>

_PeriodicTask PeriodicTask1 {
public:

PeriodicTask1(uDuration period, uTime endtime, uDuration deadline, uCluster &cluster) :
uPeriodicBaseTask(period, uTime(0), endtime, deadline, cluster) {

}
void main() {

// periodic task body
}

};

_PeriodicTask PeriodicTask2 {
public:

PeriodicTask2(uDuration period, uTime endtime, uDuration deadline, uCluster &cluster) :
uPeriodicBaseTask(period, uTime(0), endtime, deadline, cluster) {

}
void main() {

// periodic task body
}

};

void uMain::main() {
uDeadlineMonotonic dm; // create real-time scheduler
uRealTimeCluster RTClust(dm); // create real-time cluster with scheduler
uProcessor *processor;
{

// These tasks are created, but they do not begin execution until a
// processor is created on the “RTClust” cluster. This is ideal, as
// “addInitialize” is called as each task is added to the cluster.

uTime currTime = uThisProcessor().getClock().getTime();
PeriodicTask1 t1(15, currTime+90, 5, RTClust); // 15 sec period, 5 sec deadline
PeriodicTask2 t2(30, currTime+90, 10, RTClust); // 30 sec period, 5 sec deadline
PeriodicTask1 t3(60, currTime+90, 20, RTClust); // 60 sec period, 20 sec deadline

// Only when all tasks are on the cluster, and the scheduling algorithm
// as ordered the tasks, is a processor associated with cluster
// “RTClust” to execute the tasks on the cluster.

processor = new uProcessor(RTClust);
} // wait for t1, t2, and t3 to finish
delete processor;

}

Figure 8.4: Sample Real-Time Program

126 CHAPTER 8. REAL-TIME

Chapter 9

Miscellaneous

9.1 Default Values
� C++ has a number of environment variables set to reasonable initial values for a basic concurrent program. However,
some concurrent programs may need to adjust these values to obtain correct execution or enhanced performance.
Currently, these variables affect tasks, processors, and the heap.

A default value is specified indirectly via a default routine, which returns the specific default value. A routine
allows an arbitrary computation to generate an appropriate value. Each default routine can be replaced by defining a
routine with the same name and signature in an application, e.g.:

unsigned int uDefaultStackSize() {
return 64 * 1024; // 64K default stack size

}

If the value of a global variable is used in the computation, the application can change the default value dynamically by
changing this global variable; hence, actions performed at different times are initialized with different default values
(unless overridden locally). However, the global variable must be statically initialized because its value may be used
to initialize objects at the start of the � C++ runtime, i.e., before the application’s code starts execution.

9.1.1 Task

The following default routines directly or indirectly affect tasks:

unsigned int uDefaultStackSize(); // cluster coroutine/task stack size (bytes)
unsigned int uMainStackSize(); // uMain task stack size (bytes)
unsigned int uDefaultPreemption(); // processor scheduling pre-emption duration (milliseconds)

Routine uDefaultStackSize returns a stack size to initialize a cluster’s default stack-size (versus being used directly to
initialize a coroutine/task stack-size). A coroutine/task created on a cluster without an explicit stack size is initialized
to the cluster’s default stack-size; hence, there is a level of indirection between this default routine and its use for
initializing a stack size. As well, a cluster’s default stack-size can be explicitly changed after the cluster is created
(see Section 7.3, p. 105). Routine uMainStackSize is used directly to provide a stack size for the implicitly declared
initial task of type uMain (see Section 2.2, p. 8). Since this initial task is defined and created by � C++, it has a separate
default routine so it can be adjusted differently from the application tasks. Routine uDefaultPreemption returns a time
in milliseconds to initialize a virtual processor’s default pre-emption time (versus being used directly to initialize a
task’s pre-emption time). A task executing on a processor is rescheduled after no more than this amount of time (see
Section 7.4, p. 107).

9.1.2 Processor

The following default routines directly affect processors:

unsigned int uDefaultSpin(); // processor spin amount before becoming idle
unsigned int uDefaultProcessors(); // number of processors created on the user cluster

Routine uDefaultSpin returns the maximum number of times the cluster’s ready queue is checked for an available
task to execute before the processor blocks. As well, a processor’s default spin can be explicitly changed after the

127

128 CHAPTER 9. MISCELLANEOUS

processor is created (see Section 7.4, p. 107). Routine uDefaultProcessors returns the number of implicitly created
virtual processors on the user cluster (see Section 2.3.2, p. 9). When the user cluster is created, at least this many
processors are implicitly created to execute tasks concurrently.

9.1.3 Heap

The following default routine directly affects the heap:

unsigned int uDefaultHeapExpansion(); // heap expansion size (bytes)

Routine uDefaultHeapExpansion returns the amount to extend the heap size once all the current storage in the heap is
allocated (see Section 6.2.3.10, p. 101).

9.2 Symbolic Debugging

The symbolic debugging tools (e.g., dbx, gdb) do not work perfectly with � C++. This is because each coroutine and
task has its own stack, and the debugger does not know that there are multiple stacks. When a program terminates
with an error, only the stack of the coroutine or task in execution at the time of the error is understood by the debugger.
Furthermore, in the multiprocessor case, there are multiple kernel threads that are not necessarily handled well by all
debuggers. Some debuggers do handle multiple kernel threads (which correspond to � C++ virtual processors), and
hence, it is possible to examine at least the active tasks running on each kernel thread. Nevertheless, it is possible
to use many debuggers on programs compiled with the unikernel. At the very least, it is usually possible to examine
some of the variables, externals and ones local to the current coroutine or task, and to discover the statement where
the error occurred.

For most debuggers it is necessary to tell them to let the � C++ runtime system handle certain UNIX signals. Signals
SIGALRM and SIGUSR1 are handled by � C++ to perform pre-emptive scheduling. In gdb, the following debugger
command allows the application program to handle signal SIGALRM and SIGUSR1:

handle SIGALRM nostop noprint pass ignore
handle SIGUSR1 nostop noprint pass ignore

9.3 Installation Requirements
� C++ comes configured to run on any of the following platforms (single and multiple processor):

� solaris-sparc : Solaris 8/9/10, SPARC� irix-mips : IRIX 6.x, MIPS� linux-i386 : Linux 2.4.x/2.6.x, Intel (AMD) IA-32� linux-ia64 : Linux 2.4.x/2.6.x, Intel IA-64 (Itanium)� linux-x86 64 : Linux 2.4.x/2.6.x, AMD Opteron� freebsd-i386 : FreeBSD 6.0, Intel (AMD) IA-32

� C++ requires at least GNU [Tie90] gcc-3.4.x or greater, or Intel icc 8.1 or 9.x. These compilers can be obtained free
of charge. As well, � C++ programs may contain OpenMP directives for the Intel 9.x compiler, when compiled with
the openmp flag. � C++ works reasonably well with GNU gcc-3.3.x, but there are some user compilation situations
that fail (e.g., some usages of osacquire/isacquire). However, � C++ does not build with gcc-3.3.x on Solaris 10. � C++
does NOT compile using other compilers.

9.4 Installation

The current version of � C++ can be obtained by anonymous ftp from the following location (remember to set your ftp
mode to binary):

plg.uwaterloo.ca:pub/uSystem/u++ 5.4.1.tar.gz

Execute the following command to unpack the source:

% gunzip c u++ 5.4.1.tar.gz | tar xf

The README file contains instructions on how to build � C++.

9.5. REPORTING PROBLEMS 129

9.5 Reporting Problems
If you have problems or questions or suggestions, send e-mail to usystem@plg.uwaterloo.ca or mail to:

� System Project
c/o Peter A. Buhr
School of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
CANADA

As well, visit the � System web site at: http:// plg.uwaterloo.ca/~usystem

9.6 Contributors
While many people have made numerous suggestions, the following people were instrumental in turning this project
from an idea into reality. The original design work, Version 1.0, was done by Peter Buhr, Glen Ditchfield and Bob
Zarnke [BDZ89], with additional help from Jan Pachl on the train to Wengen. Brian Younger built Version 1.0 by
modifying the AT&T 1.2.1 C++ compiler [You91]. Version 2.0 was designed by Peter Buhr, Glen Ditchfield, Rick
Stroobosscher and Bob Zarnke [BDS

�

92]. Version 3.0 was designed by Peter Buhr, Rick Stroobosscher and Bob
Zarnke. Rick Stroobosscher built both Version 2.0 and 3.0 translator and kernel. Peter Buhr wrote the documentation
and built the non-blocking I/O library as well as doing other sundry coding. Version 4.0 kernel was designed and
implemented by Peter Buhr. Nikita Borisov and Peter Buhr fixed several problems in the translator. Amir Michail
started the real-time work and built a working prototype. Philipp Lim and Peter Buhr designed the first version of
the real-time support and Philipp did most of the implementation with occasional help from Peter Buhr. Ashif Harji
and Peter Buhr designed the second version of the real-time support and Ashif did most of the implementation with
occasional help from Peter Buhr. Russell Mok and Peter Buhr designed the first version of the extended exception
handling and Russell did most of the implementation with occasional help from Peter Buhr. Roy Krischer and Peter
Buhr designed the second version of the extended exception handling and Roy did most of the implementation with
occasional help from Peter Buhr. Version 5.0 kernel was designed and implemented by Peter Buhr, Richard Bilson
and Ashif Harji. Tom, Sasha, Tom, Raj, and Martin, the “gizmo guys”, all helped Peter Buhr and Ashif Harji with
the gizmo port. Finally, the many contributions made by all the students in CS342/CS343 (Waterloo) and CSC372
(Toronto), who struggled with earlier versions of � C++, is recognized.

The indirect contributers are Richard Stallman for providing emacs and gmake so that we could accomplish useful
work in UNIX, Michael D. Tiemann and Doug Lea for providing the initial version of GNU C++ and Dennis Vadura
for providing dmake (used before gmake).

130 CHAPTER 9. MISCELLANEOUS

Appendix A

� C++ Grammar

The grammar for � C++ is an extension of the grammar for C++ given in [Int98, Annex A]. The ellipsis in the following
rules represent the productions elided from the C++ grammar.

function-specifier :
. . .
mutex-specifier

mutex-specifier :
_Mutex queue-types �����
uMutex queue-types ����� . (deprecated)
_Nomutex queue-types �����
uNoMutex queue-types ����� . (deprecated)

queue-types :
< class-name >
< class-name , class-name >

class-key :
mutex-specifier ����� class
. . .
mutex-specifier ����� _Coroutine
mutex-specifier ����� uCoroutine . (deprecated)
mutex-specifier ����� _Task queue-types �����
mutex-specifier ����� uTask queue-types ����� . (deprecated)
_RealTimeTask queue-types �����
uRealTimeTask queue-types ����� . (deprecated)
_PeriodicTask queue-types �����
uPeriodicTask queue-types ����� . (deprecated)
_SporadicTask queue-types �����

uSporadicTask queue-types ����� . (deprecated)
_DualEvent
uDualEvent . (deprecated)
_ResumeEvent
uRaiseEvent . (deprecated)
_ThrowEvent
uThrowEvent . (deprecated)

statement :
. . .
uSuspend ; . (deprecated)
uResume ; . (deprecated)
uWait expression ; . (deprecated)

131

132 APPENDIX A. � C++ GRAMMAR

uWait expression uWith expression ; . (deprecated)
uSignal expression ; . (deprecated)
uSignalBlock expression ; . (deprecated)
uAcceptWait (dname-list) expression ;
uAcceptWait (dname-list) expression uWith expression ;
uAcceptReturn (dname-list) expression ����� ;
accept-statement ;
_Disable exception-list ����� statement ;
uDisable exception-list ����� statement ; . (deprecated)
_Enable exception-list ����� statement ;
uEnable exception-list ����� statement ; . (deprecated)

exception-list :
< class-name > exception-list �����

jump-statement :
break identifier ����� ;
continue identifier ����� ;
. . .

accept-statement :
when-clause ����� _Accept (identifier-list) statement
when-clause ����� uAccept (identifier-list) statement . (deprecated)
when-clause ����� _Accept (identifier-list) statement else accept-statement
when-clause ����� uAccept (identifier-list) statement uOr accept-statement (deprecated)
when-clause ����� _Accept (identifier-list) statement when-clause ����� else statement
when-clause ����� uAccept (identifier-list) statement when-clause ����� uElse statement . (deprecated)
timeout-clause

when-clause :
_When (expression)
uWhen (expression) . (deprecated)

timeout-clause :
when-clause ����� _Timeout (expression) statement
when-clause ����� uTimeout (expression) statement . (deprecated)

try-block :
try resumption-handler-seq compound-statement handler-seq

handler :
. . .
catch (lvalue . exception-declaration) compound-statement

resumption-handler-seq :
resumption-handler resumption-handler-seq �����

resumption-handler :
< class-name >
< class-name , expression >
< lvalue . class-name >
< lvalue . class-name , expression >
< . . . , expression >
< . . . >

throw-expression :
. . .
_Throw assignment-expression ����� at-expression �����

uThrow assignment-expression ����� at-expression ����� . (deprecated)
_Resume assignment-expression ����� at-expression �����

uRaise assignment-expression ����� at-expression ����� . (deprecated)

133

at-expression :
_At assignment-expression
uAt assignment-expression . (deprecated)

134 APPENDIX A. � C++ GRAMMAR

Appendix B

Data Structure Library (DSL)

� C++ makes use of several basic data structures to manage objects in its runtime environment: stack, queue and
sequence. Since these data structures are needed at compile time because of inlining, it is possible to use them in a

� C++ application program. When appropriate, reusing code by an application programmer can save significant time
and effort. However, be forewarned that the � C++ DSL is only as extensive as needed to implement � C++; it is not
meant to be a complete data structure library (such as LEDA or the STL).

A data structure is defined to be a group of nodes, containing user data, organized into a particular format, with
specific operations peculiar to that format. For all data structures in this library, it is the user’s responsibility to create
and delete all nodes. Because a node’s existence is independent of the data structure that organizes it, all nodes are
manipulated by address not value; hence, all data structure routines take and return pointers to nodes and not the nodes
themselves.

Nodes are divided into two kinds: those with one link field, which form a collection, and those with two link fields,
which form a sequence.

data

data

collection node sequence node

uStack and uQueue are collections and uSequence is a sequence. To get the appropriate link fields associated with a
user node, it must be a public descendant of uColable or uSeqable, respectively, e.g.:

class stacknode : public uColable { . . . }
class queuenode : public uColable { . . . }
class seqnode : public uSeqable { . . . }

A node inheriting from uSeqable can be put in a collection data structure but not vice versa. Along with providing the
appropriate link fields, the types uColable and uSeqable also provide one member routine:

bool listed() const;

which returns true if the node is an element of any collection or sequence and false otherwise.
Finally, no header files are necessary to access the � C++ DSL; all necessary definitions are included when file

<uC++.h> is included.
Some � C++ DSL restrictions are:

� None of the member routines are virtual in any of the data structures for efficiency reasons. Therefore, pointers
to data structures must be used with care or incorrect member routines may be invoked.

B.1 Stack
A uStack is a collection that defines an ordering among the nodes: nodes are returned by pop in the reverse order that
they are added by push.

135

136 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

stack

top

datadatadata

0/

template<class T> class uStack {
public:

uStack();
bool empty() const;
T *head() const
T *top() const;
void addHead(T *n);
void add(T *n);
void push(T *n);
T *drop();
T *pop();

};

T must be a public descendant of uColable.
The member routine empty returns true if the stack has no nodes and false otherwise. The member routine head

returns a pointer to the top node of the stack without removing it or NULL if the stack has no nodes. The member
routine top is a synonym for head. The member routine addHead adds a node to the top of the stack. The member
routine add is a synonym for addHead. The member routine push is a synonym for addHead. The member routine
drop removes a node from the top of the stack and returns a pointer to it or NULL if the stack has no nodes. The
member routine pop is a synonym for drop.

B.1.1 Iterator

The iterator uStackIter<T> generates a stream of the elements of a uStack<T>.

template<class T> class uStackIter {
public:

uStackIter();
uStackIter(const uStack<T> &s);
void over(const uStack<T> &s);
bool operator>>(T *&tp);

};

It is used to iterate over the nodes of a stack from the top of the stack to the bottom.
The overloaded constructor routine uStackIter has the following forms:

uStackIter() – creates an iterator without associating it with a particular stack; the association must be done sub-
sequently with member over.

uStackIter(const uStack<T> &s) – creates an iterator and associates it the specified stack; the association can be
changed subsequently with member over.

The member routine over resets the iterator to the top of the specified stack. The member routine >> attempts to
move the iterator’s internal cursor to the next node. If the bottom (end) of the stack has not been reached, the argument
is set to the address of the next node and true is returned; otherwise the argument is set to NULL and false is returned.

Figure B.1 illustrates creating and using a stack and stack iterator.

B.2 Queue
A uQueue is a collection that defines an ordering among the nodes: nodes are returned by drop in the same order that
they are added by add.

head tail

queue

datadatadata

/0

B.2. QUEUE 137

struct stackNode : public uColable {
int v;
stackNode(int v) : v(v) {}

};
void uMain::main() {

uStack<stackNode> stack;
uStackIter<stackNode> stackgen;
stackNode *sp;
int i;

for (i = 0; i < 10; i += 1) { // fill stack
stack.push(new stackNode(2 * i));

} // for

for (stackgen.over(stack); stackgen >> sp;) { // print stack
cout << sp >v << " ";

} // for
cout << endl;

for (i = 0; i < 10; i += 1) { // empty stack
sp = stack.pop();
delete sp;

} // for
}

Figure B.1: DSL Stack

template<class T> class uQueue {
public:

uQueue();
bool empty() const;
T *head() const
T *tail() const;
T *succ(T *n) const;
void addHead(T *n);
void addTail(T *n);
void add(T *n);
T *dropHead();
T *drop();
T *dropTail();
void remove(T *n);

};

T must be a public descendant of uColable.
The member routine empty returns true if the queue has no nodes and false otherwise. The member routine head

returns a pointer to the head or first node of the queue without removing it or NULL if the queue has no nodes. The
member routine tail returns a pointer to the tail or last node of the queue without removing it. The member routine succ
returns a pointer to the successor node after the specified node (toward the tail) or NULL if the specified node is the
last node in the sequence. The member routine addHead adds a node to the head or front of the queue. The member
routine addTail adds a node to the tail or end of the queue. The member routine add is a synonym for addTail. The
member routine dropHead removes a node from the head or front of the queue and returns a pointer to it or NULL if
the queue has no nodes. The member routine drop is a synonym for dropHead. The member routine dropTail removes
a node from the tail or end of the queue and returns a pointer to it or NULL if the queue has no nodes. The member
routine remove removes the specified node from the queue (any location).

B.2.1 Iterator

The iterator uQueueIter<T> generates a stream of the elements of a uQueue<T>.

138 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

struct queueNode : public uColable {
int v;
queueNode(int v) : v(v) {}

};
void uMain::main() {

uQueue<queueNode> queue;
uQueueIter<queueNode> queuegen;
queueNode *qp;
int i;

for (i = 0; i < 10; i += 1) { // fill queue
queue.add(new queueNode(2 * i));

} // for

for (queuegen.over(queue); queuegen >> qp;) { // print queue
cout << qp >v << " ";

} // for
cout << endl;

for (i = 0; i < 10; i += 1) { // empty queue
qp = queue.drop();
delete qp;

} // for
}

Figure B.2: DSL Queue

template<class T> class uQueueIter {
public:

uQueueIter();
uQueueIter(const uQueue<T> &q);
void over(const uQueue<T> &q);
bool operator>>(T *&tp);

};

It is used to iterate over the nodes of a queue from the head of the queue to the tail.
The overloaded constructor routine uQueueIter has the following forms:

uQueueIter() – creates an iterator without associating it with a particular queue; the association must be done
subsequently with member over.

uQueueIter(const uQueue<T> &q) – creates an iterator and associates it the specified queue; the association can
be changed subsequently with member over.

The member routine over resets the iterator to the head of the specified queue. The member routine >> attempts to
move the iterator’s internal cursor to the next node. If the tail (end) of the queue has not been reached, the argument is
set to the address of the next node and true is returned; otherwise the argument is set to NULL and false is returned.

Figure B.2 illustrates creating and using a queue and queue iterator.

B.3 Sequence
A uSequence is a collection that defines a bidirectional ordering among the nodes: nodes can be added and removed
from either end of the collection; furthermore, nodes can be inserted and removed anywhere in the collection.

sequence

datadatadata

head tail

/0

/0

B.3. SEQUENCE 139

template<class T> class uSequence {
public:

uSequence();
bool empty() const;
T *head() const
T *tail() const;
T *succ(T *n) const;
T *pred(T *n) const;
void insertBef(T *n, T *bef);
void insertAft(T *aft, T *n);
void addHead(T* n);
void addTail(T* n);
void add(T* n);
T *dropHead();
T *drop();
T *dropTail();
void remove(T *n);

};

T must be a public descendant of uSeqable.
The member routine empty returns true if the sequence has no nodes and false otherwise. The member routine

head returns a pointer to the head or first node of the sequence without removing it or NULL if the sequence has no
nodes. The member routine tail returns a pointer to the tail or last node of the sequence without removing it or NULL if
the sequence has no nodes. The member routine succ returns a pointer to the successor node after the specified node
(toward the tail) or NULL if the specified node is the last node in the sequence. The member routine pred returns a
pointer to the predecessor node before the specified node (toward the head) or NULL if the specified node is the first
node in the sequence. The member routine insertBef adds a node before the specified node or at the end (tail) if bef is
NULL. The member routine insertAft adds a node after the specified node or at the beginning (head) if aft is NULL. The
member routine addHead adds a node to the head or front of the sequence. The member routine addTail adds a node
to the tail or end of the sequence. The member routine add is a synonym for addTail. The member routine dropHead
removes a node from the head or front of the sequence and returns a pointer to it or NULL if the sequence has no nodes.
The member routine drop is a synonym for dropHead. The member routine dropTail removes a node from the tail or
end of the sequence and returns a pointer to it or NULL if the sequence has no nodes. The member routine remove
removes the specified node from the sequence (any location).

A sequence behaves like a queue when members add and drop are used. The example program in Section C.3,
p. 147 makes use of a sequence and modifies it so that nodes are maintained in order.

B.3.1 Iterator

The iterator uSeqIter<T> generates a stream of the elements of a uSequence<T>.

template<class T> class uSeqIter {
public:

uSeqIter();
uSeqIter(const uSequence<T> &s);
void over(const uSequence<T> &s);
bool operator>>(T *&tp);

};

It is used to iterate over the nodes of a sequence from the head of the sequence to the tail.
The iterator uSeqIterRev<T> generates a stream of the elements of a uSequence<T>.

template<class T> class uSegGenRev {
public:

uSegGenRev();
uSegGenRev(const uSequence<T> &s);
void over(const uSequence<T> &s);
bool operator>>(T *&tp);

};

140 APPENDIX B. DATA STRUCTURE LIBRARY (DSL)

struct seqNode : public uSeqable {
int v;
seqNode(int v) : v(v) {}

};
void uMain::main() {

uSequence<seqNode> seq;
uSeqIter<seqNode> seqgen;
seqNode *sp;
int i;

for (i = 0; i < 10; i += 1) { // fill sequence
seq.add(new seqNode(2 * i));

} // for

for (seqgen.over(seq); seqgen >> sp;) { // print sequence forward
cout << sp >v << " ";

} // for
cout << endl;

for (uSeqIterRev<seqNode> seqgenrev(seq); seqgenrev >> sp;) { // print sequence reverse
cout << sp >v << " ";

} // for
cout << endl;

for (seqgen.over(seq); seqgen >> sp;) { // empty sequence
seq.remove(sp); // can remove nodes during iteration
delete sp;

} // for
}

Figure B.3: DSL Sequence

It is used to iterate over the nodes of a sequence from the tail of the sequence to the head.
The overloaded constructor routine uSeqIter has the following forms:

uSeqIter() – creates an iterator without associating it with a particular sequence; the association must be done
subsequently with member over.

uSeqIter(const uSeq<T> &q) – creates an iterator and associates it the specified sequence; the association can
be changed subsequently with member over.

The member routine over resets the iterator to the head or tail of the specified sequence depending on which iterator
is used. The member routine >> attempts to move the iterator’s internal cursor to the next node. If the head (front) or
tail (end) of the sequence has not been reached depending on which iterator is used, the argument is set to the address
of the next node and true is returned; otherwise the argument is set to NULL and false is returned.

Figure B.3 illustrates creating and using a sequence and sequence iterator.

Appendix C

Example Programs

C.1 Readers And Writer

The readers and writer problem deals with controlling access to a resource that can be shared by multiple readers, but
only one writer can use it at a time (e.g., a sequential file). While there are many possible solutions to this problem,
each solution must deal with unbounded waiting of reader and/or writer tasks if a continuous stream of one kind of
task is arriving at the monitor. For example, if readers are currently using the resource, a continuous stream of reader
tasks should not make an arriving writer task wait forever. Furthermore, a solution to the readers and writer problem
should provide FIFO execution of the tasks so that a read that is requested after a write does not execute before the
write, thus reading old information. This phenomenon is called the stale readers problem. Hoare gave a monitor
solution in [Hoa74] that has a bounded on waiting but non-FIFO execution.

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// RWEx1.cc – Readers and Writer Problem
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:51:34 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 08:41:15 2005
// Update Count : 95
//

#include <uC++.h>
#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

_Monitor ReaderWriter {
int ReadCount, WriteUsage;
uCondition ReaderAndWriter;
enum RW { READER, WRITER };

public:
ReaderWriter() {

ReadCount = WriteUsage = 0;
} // ReaderWriter

void StartRead() {
if (WriteUsage | | ! ReaderAndWriter.empty()) {

ReaderAndWriter.wait(READER);
} // if
ReadCount += 1;
if (! ReaderAndWriter.empty() && ReaderAndWriter.front() == READER) {

ReaderAndWriter.signal();
} // if

141

142 APPENDIX C. EXAMPLE PROGRAMS

} // ReaderWriter::StartRead

void EndRead() {
ReadCount = 1;
if (ReadCount == 0) {

ReaderAndWriter.signal();
} // if

} // ReaderWriter::EndRead

void StartWrite() {
if (WriteUsage | | ReadCount != 0) {

ReaderAndWriter.wait(WRITER);
} // if
WriteUsage = 1;

} // ReaderWriter::StartWrite

void EndWrite() {
WriteUsage = 0;
ReaderAndWriter.signal();

} // ReaderWriter::EndWrite
}; // ReaderWriter

volatile int SharedVar = 0; // shared variable to test readers and writers

_Task Worker {
ReaderWriter &rw;

void main() {
yield(rand() % 100); // don

�

t all start at the same time
if (rand() % 100 < 70) { // decide to be a reader or writer

rw.StartRead();
osacquire(cout) << "Reader:" << this << ", shared:" << SharedVar << endl;
yield(3);
rw.EndRead();

} else {
rw.StartWrite();
SharedVar += 1;
osacquire(cout) << "Writer:" << this << ", wrote:" << SharedVar << endl;
yield(1);
rw.EndWrite();

} // if
} // Worker::main

public:
Worker(ReaderWriter &rw) : rw(rw) {
} // Worker::Worker

}; // Worker

#define MaxTask 50

void uMain::main() {
ReaderWriter rw;
Worker *workers;

workers = new Worker[MaxTask](rw);
delete [] workers;

osacquire(cout) << "successful completion" << endl;
} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ RWEx1.cc” //
// End: //

C.2. BOUNDED BUFFER 143

C.2 Bounded Buffer

Two processes communicate through a unidirectional queue of finite length.

C.2.1 Using Monitor Accept

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// MonAcceptBB.cc – Generic bounded buffer problem using a monitor and uAccept
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:35:05 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 08:41:30 2005
// Update Count : 124
//

#include <uC++.h>

template<typename ELEMTYPE> _Monitor BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
ELEMTYPE *Elements;

public:
BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem);
ELEMTYPE remove();

}; // BoundedBuffer

template<typename ELEMTYPE> inline void BoundedBuffer<ELEMTYPE>::insert(ELEMTYPE elem) {
if (count == size) { // buffer full ?

_Accept(remove); // only allow removals
} // if

Elements[back] = elem;
back = (back + 1) % size;
count += 1;

} // BoundedBuffer::insert

template<typename ELEMTYPE> inline ELEMTYPE BoundedBuffer<ELEMTYPE>::remove() {
ELEMTYPE elem;

if (count == 0) { // buffer empty ?
_Accept(insert); // only allow insertions

} // if

elem = Elements[front];
front = (front + 1) % size;
count = 1;

return elem;
} // BoundedBuffer::remove

144 APPENDIX C. EXAMPLE PROGRAMS

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ MonAcceptBB.cc” //
// End: //

C.2.2 Using Monitor Condition

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// MonConditionBB.cc – Generic bounded buffer problem using a monitor and condition variables
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:35:05 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 08:41:43 2005
// Update Count : 57
//

#include <uC++.h>

template<typename ELEMTYPE> _Monitor BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
ELEMTYPE *Elements;
uCondition BufFull, BufEmpty;

public:
BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem) {
if (count == size) {

BufFull.wait();
} // if

Elements[back] = elem;
back = (back + 1) % size;
count += 1;

BufEmpty.signal();
}; // BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

if (count == 0) {
BufEmpty.wait();

} // if

elem = Elements[front];
front = (front + 1) % size;
count = 1;

C.2. BOUNDED BUFFER 145

BufFull.signal();
return elem;

}; // BoundedBuffer::remove
}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ MonConditionBB.cc” //
// End: //

C.2.3 Using Task

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// TaskAcceptBB.cc – Generic bounded buffer using a task
//
// Author : Peter A. Buhr
// Created On : Sun Sep 15 20:24:44 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Sun Jul 31 18:50:16 2005
// Update Count : 74
//

#include <uC++.h>

template<typename ELEMTYPE> _Task BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
ELEMTYPE *Elements;

public:
BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {
return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem) {
Elements[back] = elem;

} // BoundedBuffer::insert

ELEMTYPE remove() {
return Elements[front];

} // BoundedBuffer::remove
protected:

void main() {
for (;;) {

_Accept(~BoundedBuffer)
break;

else _When (count != size) _Accept(insert) {
back = (back + 1) % size;
count += 1;

} else _When (count != 0) _Accept(remove) {
front = (front + 1) % size;
count = 1;

146 APPENDIX C. EXAMPLE PROGRAMS

} // _Accept
} // for

} // BoundedBuffer::main
}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ TaskAcceptBB.cc” //
// End: //

C.2.4 Using P/V

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// SemaphoreBB.cc –
//
// Author : Peter A. Buhr
// Created On : Thu Aug 15 16:42:42 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Sun Jul 31 18:48:08 2005
// Update Count : 54
//

#include <uC++.h>
#include <uSemaphore.h>

template<typename ELEMTYPE> class BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
uSemaphore full, empty; // synchronize for full and empty BoundedBuffer
uSemaphore ilock, rlock; // insertion and removal locks
ELEMTYPE *Elements;

BoundedBuffer(BoundedBuffer &); // no copy
BoundedBuffer &operator=(BoundedBuffer &); // no assignment

public:
BoundedBuffer(const int size = 10) : size(size), full(0), empty(size) {

front = back = 0;
Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {
delete Elements;

} // BoundedBuffer::~BoundedBuffer

void insert(ELEMTYPE elem) {
empty.P(); // wait if queue is full

ilock.P(); // serialize insertion
Elements[back] = elem;
back = (back + 1) % size;
ilock.V();

full.V(); // signal a full queue space
} // BoundedBuffer::insert

ELEMTYPE remove() {
ELEMTYPE elem;

full.P(); // wait if queue is empty

rlock.P(); // serialize removal
elem = Elements[front];

C.3. DISK SCHEDULER 147

front = (front + 1) % size;
rlock.V();

empty.V(); // signal empty queue space
return elem;

} // BoundedBuffer::remove
}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ SemaphoreBB.cc” //
// End: //

C.3 Disk Scheduler

The following example illustrates a fully implemented disk scheduler. The disk scheduling algorithm is the elevator
algorithm, which services all the requests in one direction and then reverses direction. A linked list is used to store
incoming requests while the disk is busy servicing a particular request. The nodes of the list are stored on the stack of
the calling processes so that suspending a request does not consume resources. The list is maintained in sorted order
by track number and there is a pointer which scans backward and forward through the list. New requests can be added
both before and after the scan pointer while the disk is busy. If new requests are added before the scan pointer in the
direction of travel, they are serviced on that scan.

The disk calls the scheduler to get the next request that it services. This call does two things: it passes to the
scheduler the status of the just completed disk request, which is then returned from scheduler to disk user, and it
returns the information for the next disk operation. When a user’s request is accepted, the parameter values from the
request are copied into a list node, which is linked in sorted order into the list of pending requests. The disk removes
work from the list of requests and stores the current request it is performing in CurrentRequest. When the disk has
completed a request, the request’s status is placed in the CurrentRequest node and the user corresponding to this
request is reactivated.

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// LOOK.cc – Look Disk Scheduling Algorithm
//
// The LOOK disk scheduling algorithm causes the disk arm to sweep
// bidirectionally across the disk surface until there are no more
// requests in that particular direction, servicing all requests in
// its path.
//
// Author : Peter A. Buhr
// Created On : Thu Aug 29 21:46:11 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Nov 30 13:18:48 2005
// Update Count : 279
//

#include <uC++.h>
#include <iostream>
using std::cout;
using std::osacquire;
using std::endl;

typedef char Buffer[50]; // dummy data buffer

const int NoOfCylinders = 100;
enum IOStatus { IO_COMPLETE, IO_ERROR };

class IORequest {
public:

int track;

148 APPENDIX C. EXAMPLE PROGRAMS

int sector;
Buffer *bufadr;
IORequest() {}
IORequest(int track, int sector, Buffer *bufadr) {

IORequest::track = track;
IORequest::sector = sector;
IORequest::bufadr = bufadr;

} // IORequest::IORequest
}; // IORequest

class WaitingRequest : public uSeqable { // element for a waiting request list
WaitingRequest(WaitingRequest &); // no copy
WaitingRequest &operator=(WaitingRequest &); // no assignment

public:
uCondition block;
IOStatus status;
IORequest req;
WaitingRequest(IORequest req) {

WaitingRequest::req = req;
}

}; // WaitingRequest

class Elevator : public uSequence<WaitingRequest> {
int Direction;
WaitingRequest *Current;

Elevator(Elevator &); // no copy
Elevator &operator=(Elevator &); // no assignment

public:
Elevator() {

Direction = 1;
} // Elevator::Elevator

void orderedInsert(WaitingRequest *np) {
WaitingRequest *lp;
for (lp = head(); // insert in ascending order by track number

lp != 0 && lp >req.track < np >req.track;
lp = succ(lp));

if (empty()) Current = np; // 1st client, so set Current
insertBef(np, lp);

} // Elevator::orderedInsert

WaitingRequest *remove() {
WaitingRequest *temp = Current; // advance to next waiting client
Current = Direction ? succ(Current) : pred(Current);
uSequence<WaitingRequest>::remove(temp); // remove request

if (Current == 0) { // reverse direction ?
osacquire(cout) << "Turning" << endl;
Direction = !Direction;
Current = Direction ? head() : tail();

} // if
return temp;

} // Elevator::remove
}; // Elevator

_Task DiskScheduler;

_Task Disk {
DiskScheduler &scheduler;
void main();

public:
Disk(DiskScheduler &scheduler) : scheduler(scheduler) {
} // Disk

}; // Disk

_Task DiskScheduler {

C.3. DISK SCHEDULER 149

Elevator PendingClients; // ordered list of client requests
uCondition DiskWaiting; // disk waits here if no work
WaitingRequest *CurrentRequest; // request being serviced by disk
Disk disk; // start the disk
IORequest req;
WaitingRequest diskterm; // preallocate disk termination request

void main();
public:

DiskScheduler() : disk(*this), req(1, 0, 0), diskterm(req) {
} // DiskScheduler
IORequest WorkRequest(IOStatus);
IOStatus DiskRequest(IORequest &);

}; // DiskScheduler

_Task DiskClient {
DiskScheduler &scheduler;
void main();

public:
DiskClient(DiskScheduler &scheduler) : scheduler(scheduler) {
} // DiskClient

}; // DiskClient

void Disk::main() {
IOStatus status;
IORequest work;

status = IO_COMPLETE;
for (;;) {

work = scheduler.WorkRequest(status);
if (work.track == 1) break;

osacquire(cout) << "Disk main, track:" << work.track << endl;
yield(100); // pretend to perform an I/O operation
status = IO_COMPLETE;

} // for
} // Disk::main

void DiskScheduler::main() {
uSeqIter<WaitingRequest> iter; // declared here because of gcc compiler bug

CurrentRequest = NULL; // no current request at start
for (;;) {

_Accept(~DiskScheduler) { // request from system
break;

} else _Accept(WorkRequest) { // request from disk
} else _Accept(DiskRequest) { // request from clients
} // _Accept

} // for

// two alternatives for terminating scheduling server
#if 0

for (; ! PendingClients.empty();) { // service pending disk requests before terminating
_Accept(WorkRequest);

} // for
#else

WaitingRequest *client; // cancel pending disk requests before terminating

for (iter.over(PendingClients); iter >> client;) {
PendingClients.remove(); // remove each client from the list
client >status = IO_ERROR; // set failure status
client >block.signal(); // restart client

} // for
#endif

// pending client list is now empty

// stop disk
PendingClients.orderedInsert(&diskterm); // insert disk terminate request on list

150 APPENDIX C. EXAMPLE PROGRAMS

if (! DiskWaiting.empty()) { // disk free ?
DiskWaiting.signal(); // wake up disk to deal with termination request

} else {
_Accept(WorkRequest); // wait for current disk operation to complete

} // if
} // DiskScheduler::main

IOStatus DiskScheduler::DiskRequest(IORequest &req) {
WaitingRequest np(req); // preallocate waiting list element

PendingClients.orderedInsert(&np); // insert in ascending order by track number
if (! DiskWaiting.empty()) { // disk free ?

DiskWaiting.signal(); // reactivate disk
} // if

np.block.wait(); // wait until request is serviced

return np.status; // return status of disk request
} // DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest(IOStatus status) {
if (CurrentRequest != NULL) { // client waiting for request to complete ?

CurrentRequest >status = status; // set request status
CurrentRequest >block.ignal(); // reactivate waiting client

} // if

if (PendingClients.empty()) { // any clients waiting ?
DiskWaiting.wait(); // wait for client to arrive

} // if

CurrentRequest = PendingClients.remove(); // remove next client
�

s request
return CurrentRequest >req; // return work for disk

} // DiskScheduler::WorkRequest

void DiskClient::main() {
IOStatus status;
IORequest req(rand() % NoOfCylinders, 0, 0);

yield(rand() % 100); // don
�

t all start at the same time
osacquire(cout) << "enter DiskClient main seeking:" << req.track << endl;
status = scheduler.DiskRequest(req);
osacquire(cout) << "enter DiskClient main seeked to:" << req.track << endl;

} // DiskClient::main

void uMain::main() {
const int NoOfTests = 20;
DiskScheduler scheduler; // start the disk scheduler
DiskClient *p;

srand(getpid()); // initialize random number generator

p = new DiskClient[NoOfTests](scheduler); // start the clients
delete [] p; // wait for clients to complete

cout << "successful execution" << endl;
} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ LOOK.cc” //
// End: //

C.4 UNIX File I/O

The following example program reads in a file and copies it into another file.

C.5. UNIX SOCKET I/O 151

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// File.cc – Print multiple copies of the same file to standard output
//
// Author : Peter A. Buhr
// Created On : Tue Jan 7 08:44:56 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:20:34 2006
// Update Count : 42
//

#include <uC++.h>
#include <uFile.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;

_Task Copier {
uFile &input;

void main() {
uFileAccess in(input, O_RDONLY);
int count;
char buf[1];

for (int i = 0;; i += 1) { // copy in-file to out-file
count = in.read(buf, sizeof(buf));

if (count == 0) break; // eof ?
cout << buf[0];
if (i % 20 == 0) yield();

} // for
} // Copier::main

public:
Copier(uFile &in) : input(in) {
} // Copier::Copier

}; // Copier

void uMain::main() {
switch (argc) {

case 2:
break;

default:
cerr << "Usage: " << argv[0] << " input file" << std::endl;
exit(1);

} // switch

uFile input(argv[1]); // connect with UNIX files
{

Copier c1(input), c2(input);
}

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++ File.cc” //
// End: //

C.5 UNIX Socket I/O
The following example illustrates bidirectional communication between a client and server socket. A client starts a
task to read from standard input and write the data to a server socket. The server or its acceptor for that client, reads
the data from the client and writes it directly back to the client. The client also starts a task that reads the data coming
back from the server or its acceptor and writes it onto standard output. Hence, a file is read from standard input and

152 APPENDIX C. EXAMPLE PROGRAMS

written onto standard output after having made a loop through a server. The server can deal with multiple simultaneous
clients.

C.5.1 Client - UNIX/Datagram

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1999
//
// ClientUNIX2.cc – Client for UNIX/datagram socket test. Client reads from
// standard input, writes the data to the server, reads the data from the
// server, and writes that data to standard output.
//
// Author : Peter A. Buhr
// Created On : Thu Apr 29 16:05:12 1999
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:20:13 2006
// Update Count : 30
//

#include <uC++.h>
#include <uSemaphore.h>
#include <uSocket.h>
#include <iostream>
using std::cin;
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

unsigned uMainStackSize() { return 40000; }

#define EOD
�

\377
�

// minimum buffer size is 2, 1 character and string terminator,
�

\0
�

#define BufferSize (65)

int rcnt = 0, wcnt = 0;

// Datagram sockets are lossy (i.e., drop packets). To prevent clients from
// flooding the server with packets, resulting in dropped packets, a semaphore
// is used to synchronize the reader and writer tasks so at most N writes occur
// before a read. As well, if the buffer size is increase substantially, it may
// be necessary to decrease N to ensure the server buffer does not fill.

const int MaxWriteBeforeRead = 5;
uSemaphore readSync(MaxWriteBeforeRead);

_Task reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for (;;) {
len = client.recvfrom(buf, sizeof(buf));
// osacquire(cerr) << “Client::reader read len:” << len << endl;

if (len == 0) uAbort("(uSocketClient &)0x%p : EOF ecountered without EOD", &client);
readSync.V();
// The EOD character can be piggy-backed onto the end of the message.

if (buf[len 1] == EOD) {
rcnt += len 1;
cout.write(buf, len 1); // do not write the EOD
break; }

rcnt += len;
cout.write(buf, len);

C.5. UNIX SOCKET I/O 153

} // for
} // reader::main

public:
reader(uSocketClient &client) : client (client) {
} // reader::reader

}; // reader

_Task writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for (;;) {
cin.get(buf, sizeof(buf),

�

\0
�

); // leave room for string terminator
int len = strlen(buf);
// osacquire(cerr) << “Client::writer read len:” << len << endl;

if (buf[0] ==
�

\0
�

) break;
wcnt += len;
readSync.P();
client.sendto(buf, len);

} // for
buf[0] = EOD;
readSync.P();
client.sendto(buf, sizeof(char));

} // writer::main
public:

writer(uSocketClient &client) : client(client) {
} // writer::writer

}; // writer

void uMain::main() {
switch (argc) {

case 2:
break;

default:
cerr << "Usage: " << argv[0] << " socket name" << endl;
exit(1);

} // switch

uSocketClient client(argv[1], SOCK_DGRAM); // connection to server
{

reader rd(client); // emit worker to read from server and write to output
writer wr(client); // emit worker to read from input and write to server

}
if (wcnt != rcnt) {

uAbort("not all data transfered\n");
} // if

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Client ClientUNIX2.cc” //
// End: //

C.5.2 Server - UNIX/Datagram

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1999
//
// ServerUNIX2.cc – Server for UNIX/datagram socket test. Server reads data
// from multiple clients. The server reads the data from the client and writes
// it back.
//
// Author : Peter A. Buhr
// Created On : Fri Apr 30 16:36:18 1999

154 APPENDIX C. EXAMPLE PROGRAMS

// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:22:17 2006
// Update Count : 30
//

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD
�

\377
�

#define BufferSize (8 * 1024)

_Task reader {
uSocketServer &server;

void main() {
uDuration timeout(10, 0); // timeout for read
char buf[BufferSize];
int len;

try {
for (;;) {

len = server.recvfrom(buf, sizeof(buf), 0, &timeout);
// osacquire(cerr) << “Server::reader read len:” << len << endl;

if (len == 0) uAbort("(uSocketServer &)0x%p : EOF ecountered without EOD", &server);
server.sendto(buf, len); // write byte back to client

} // for
} catch(uSocketServer::ReadTimeout) {
} // try

} // reader::main
public:

reader(uSocketServer &server) : uBaseTask(64000), server(server) {
} // reader::reader

}; // reader

void uMain::main() {
switch (argc) {

case 2:
break;

default:
cerr << "Usage: " << argv[0] << " socket name" << endl;
exit(1);

} // switch

uSocketServer server(argv[1], SOCK_DGRAM); // create and bind a server socket
{

reader rd(server); // execute until EOD
}

} // uMain

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Server ServerUNIX2.cc” //
// End: //

C.5.3 Client - INET/Stream

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// ClientINET.cc – Client for INET/stream socket test. Client reads from
// standard input, writes the data to the server, reads the data from the
// server, and writes that data to standard output.

C.5. UNIX SOCKET I/O 155

//
// Author : Peter A. Buhr
// Created On : Tue Jan 7 08:42:32 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:19:04 2006
// Update Count : 143
//

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cin;
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD
�

\377
�

// minimum buffer size is 2, 1 character and string terminator,
�

\0
�

#define BufferSize (65)

int rcnt = 0, wcnt = 0;

_Task reader {
uSocketClient &client;

void main() {
char buf[BufferSize];
int len;

for (;;) {
len = client.read(buf, sizeof(buf));
// osacquire(cerr) << “Client::reader read len:” << len << endl;

if (len == 0) uAbort("(uSocketClient &)0x%p : EOF ecountered without EOD", &client);
// The EOD character can be piggy-backed onto the end of the message.

if (buf[len 1] == EOD) {
rcnt += len 1;
cout.write(buf, len 1); // do not write the EOD
break; }

rcnt += len;
cout.write(buf, len);

} // for
} // reader::main

public:
reader(uSocketClient &client) : client (client) {
} // reader::reader

}; // reader

_Task writer {
uSocketClient &client;

void main() {
char buf[BufferSize];

for (;;) {
cin.get(buf, sizeof(buf),

�

\0
�

); // leave room for string terminator
int len = strlen(buf);
// osacquire(cerr) << “Client::writer read len:” << len << endl;

if (buf[0] ==
�

\0
�

) break;
wcnt += len;
client.write(buf, len);

} // for
buf[0] = EOD;
client.write(buf, sizeof(char));

} // writer::main
public:

writer(uSocketClient &client) : client(client) {

156 APPENDIX C. EXAMPLE PROGRAMS

} // writer::writer
}; // writer

void uMain::main() {
switch (argc) {

case 2:
break;

default:
cerr << "Usage: " << argv[0] << " port number" << endl;
exit(1);

} // switch

uSocketClient client(atoi(argv[1])); // connection to server
{

reader rd(client); // emit worker to read from server and write to output
writer wr(client); // emit worker to read from input and write to server

}
if (wcnt != rcnt) {

uAbort("not all data transfered\n");
} // if

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Client ClientINET.cc” //
// End: //

C.5.4 Socket - INET/Stream

// -*- Mode: C++ -*-
//
// uC++ Version 5.4.1, Copyright (C) Peter A. Buhr 1994
//
// ServerINET.cc – Server for INET/stream socket test. Server accepts multiple
// connections from clients. Each client then communicates with an acceptor.
// The acceptor reads the data from the client and writes it back.
//
// Author : Peter A. Buhr
// Created On : Tue Jan 7 08:40:22 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Sep 2 09:21:07 2006
// Update Count : 175
//

#include <uC++.h>
#include <uSocket.h>
#include <iostream>
using std::cout;
using std::cerr;
using std::osacquire;
using std::endl;

#define EOD
�

\377
�

#define BufferSize (8 * 1024)

_Task server; // forward declaration

_Task acceptor {
uSocketServer &sockserver;
server &s;

void main();
public:

acceptor(uSocketServer &socks, server &s) : uBaseTask(64000), sockserver(socks), s(s) {
} // acceptor::acceptor

}; // acceptor

C.5. UNIX SOCKET I/O 157

_Task server {
uSocketServer &sockserver;
acceptor *terminate;
int acceptorCnt;
bool timeout;

public:
server(uSocketServer &socks) : sockserver(socks), acceptorCnt(1), timeout(false) {
} // server::server

void connection() {
} // server::connection

void complete(acceptor *terminate, bool timeout) {
server::terminate = terminate;
server::timeout = timeout;

} // server::complete
private:

void main() {
new acceptor(sockserver, *this); // create initial acceptor
for (;;) {

_Accept(connection) {
new acceptor(sockserver, *this); // create new acceptor after a connection
acceptorCnt += 1;

} else _Accept(complete) { // acceptor has completed with client
delete terminate; // delete must appear here or deadlock
acceptorCnt = 1;

if (acceptorCnt == 0) break; // if no outstanding connections, stop
if (timeout) {

new acceptor(sockserver, *this); // create new acceptor after a timeout
acceptorCnt += 1;

} // if
}; // _Accept

} // for
} // server::main

}; // server

void acceptor::main() {
try {

uDuration timeout(10, 0); // timeout for accept
uSocketAccept acceptor(sockserver, &timeout); // accept a connection from a client
char buf[BufferSize];
int len;

s.connection(); // tell server about client connection
for (;;) {

len = acceptor.read(buf, sizeof(buf)); // read byte from client
// osacquire(cerr) << “Server::acceptor read len:” << len << endl;

if (len == 0) uAbort("(uSocketAccept &)0x%p : EOF ecountered without EOD", &acceptor);
acceptor.write(buf, len); // write byte back to client
// The EOD character can be piggy-backed onto the end of the message.

if (buf[len 1] == EOD) break; // end of data ?
} // for
s.complete(this, false); // terminate

} catch(uSocketAccept::OpenTimeout) {
s.complete(this, true); // terminate

} // try
} // acceptor::main

void uMain::main() {
switch (argc) {

case 1:
break;

default:
cerr << "Usage: " << argv[0] << endl;
exit(1);

} // switch

158 APPENDIX C. EXAMPLE PROGRAMS

short unsigned int port;
uSocketServer sockserver(&port); // create and bind a server socket to free port

cout << port << endl; // print out free port for clients
{

server s(sockserver); // execute until acceptor times out
}

} // uMain

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -o Server ServerINET.cc” //
// End: //

Bibliography

[AGMK94] B. Adelberg, H. Garcia-Molina, and B. Kao. Emulating Soft Real-Time Scheduling Using Traditional
Operating System Schedulers. In Proc. IEEE Real-Time Systems Symposium, pages 292–298, 1994.
121

[AOC
�

88] Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving Elshoff, Kelvin Nilsen, Titus Purdin,
and Gregg Townsend. An Overview of the SR Language and Implementation. ACM Transactions on
Programming Languages and Systems, 10(1):51–86, January 1988. 27

[BD92] Peter A. Buhr and Glen Ditchfield. Adding Concurrency to a Programming Language. In USENIX C++
Technical Conference Proceedings, pages 207–224, Portland, Oregon, U.S.A., August 1992. USENIX
Association. 3

[BDS
�

92] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. � C++: Concurrency
in the Object-Oriented Language C++. Software—Practice and Experience, 22(2):137–172, February
1992. 129

[BDZ89] P. A. Buhr, Glen Ditchfield, and C. R. Zarnke. Adding Concurrency to a Statically Type-Safe Object-
Oriented Programming Language. SIGPLAN Notices, 24(4):18–21, April 1989. Proceedings of the
ACM SIGPLAN Workshop on Object-Based Concurrent Programming, Sept. 26–27, 1988, San Diego,
California, U.S.A. 129

[BFC95] Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor Classification. ACM Computing Surveys,
27(1):63–107, March 1995. 21

[BLL88] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A System for Object-oriented Parallel
Programming. Software—Practice and Experience, 18(8):713–732, August 1988. 5, 32

[BMZ92] Peter A. Buhr, Hamish I. Macdonald, and C. Robert Zarnke. Synchronous and Asynchronous Handling
of Abnormal Events in the � System. Software—Practice and Experience, 22(9):735–776, September
1992. 66, 69

[BP91] T. Baker and O. Pazy. Real-Time Features of Ada 9X. In Proc. IEEE Real-Time Systems Symposium,
pages 172–180, 1991. 118

[Bri75] Per Brinch Hansen. The Programming Language Concurrent Pascal. IEEE Transactions on Software
Engineering, 2:199–206, June 1975. 3

[Buh85] P. A. Buhr. A Case for Teaching Multi-exit Loops to Beginning Programmers. SIGPLAN Notices,
20(11):14–22, November 1985. 12

[Buh95] Peter A. Buhr. Are Safe Concurrency Libraries Possible? Communications of the ACM, 38(2):117–120,
February 1995. 3, 32

[BW90] Alan Burns and A. J. Wellings. The Notion of Priority in Real-Time Programming Languages. Computer
Language, 15(3):153–162, 1990. 121, 122

[Car90] T. A. Cargill. Does C++ Really Need Multiple Inheritance? In USENIX C++ Conference Proceedings,
pages 315–323, San Francisco, California, U.S.A., April 1990. USENIX Association. 36

159

160 BIBLIOGRAPHY

[CD95] Tai M. Chung and Hank G. Dietz. Language Constructs and Transformation for Hard Real-time Systems.
In Proc. Second ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Real-Time Systems,
June 1995. 113

[CG89] Nicholas Carriero and David Gelernter. Linda in Context. Communications of the ACM, 32(4):444–458,
April 1989. 3

[CKL
�

88] Boleslaw Ciesielski, Antoni Kreczmar, Marek Lao, Andrzej Litwiniuk, Teresa Przytycka, Andrzej
Salwicki, Jolanta Warpechowska, Marek Warpechowski, Andrzej Szalas, and Danuta Szczepanska-
Wasersztrum. Report on the Programming Language LOGLAN’88. Technical report, Institute of Infor-
matics, University of Warsaw, Pkin 8th Floor, 00-901 Warsaw, Poland, December 1988. 34

[DG87] Thomas W. Doeppner and Alan J. Gebele. C++ on a Parallel Machine. In Proceedings and Additional
Papers C++Workshop, pages 94–107, Santa Fe, New Mexico, U.S.A, November 1987. USENIX Asso-
ciation. 32

[Dij65] Edsger W. Dijkstra. Cooperating Sequential Processes. Technical report, Technological University,
Eindhoven, Netherlands, 1965. Reprinted in [Gen68] pp. 43–112. 36

[Geh92] N. H. Gehani. Exceptional C or C with Exceptions. Software—Practice and Experience, 22(10):827–
848, October 1992. 66

[Gen68] F. Genuys, editor. Programming Languages. Academic Press, New York, 1968. NATO Advanced Study
Institute, Villard-de-Lans, 1966. 160

[Gen81] W. Morven Gentleman. Message Passing between Sequential Processes: the Reply Primitive and the
Administrator Concept. Software—Practice and Experience, 11(5):435–466, May 1981. 4

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Addison-
Wesley, second edition, 2000. 12, 33

[Gol94] David B. Golub. Operating System Support for Coexistence of Real-Time and Conventional Scheduling.
Technical report, Carnegie Mellon University, November 1994. 121

[GR88] N. H. Gehani and W. D. Roome. Concurrent C++: Concurrent Programming with Class(es). Software—
Practice and Experience, 18(12):1157–1177, December 1988. 7, 27

[GR91] N. Gehani and K. Ramamritham. Real-Time Concurrent C: A Language for Programming Dynamic
Real-Time Systems. Journal of Real-Time Systems, 3(4):377–405, December 1991. 113

[Hal85] Robert H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Programming. ACM Transac-
tions on Programming Languages and Systems, 7(4):501–538, October 1985. 4

[HM92] W.A. Halang and K. Mangold. Real-Time Programming Languages. In Michael Schiebe and Saskia
Pferrer, editors, Real-Time Systems Engineering and Applications, chapter 4, pages 141–200. Kluwer
Academic Publishers, 1992. 113

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communications of the ACM,
17(10):549–557, October 1974. 5, 141

[Hol92] R. C. Holt. Turing Reference Manual. Holt Software Associates Inc., third edition, 1992. 3

[Int95] International Standard ISO/IEC. Ada Reference Manual, 6.0 edition, 1995. 69, 113

[Int98] International Standard ISO/IEC 14882:1998 (E), www.ansi.org. Programming Languages – C++, 1998.
131

[ITM90] Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-Oriented Real-Time Language Design: Constructs
for Timing Constraints. In Proc. ECOOP/OOPSLA, pages 289–298, October 1990. 113

BIBLIOGRAPHY 161

[KK91] K.B. Kenny and K.J.Lin. Building Flexible Real-Time Systems using the Flex Language. IEEE Com-
puter, 24(5):70–78, May 1991. 113

[KS86] E. Klingerman and A.D. Stoyenko. Real-Time Euclid: A Language for Reliable Real-Time Systems.
IEEE Transactions on Software Engineering, pages 941–949, September 1986. 113

[Lab90] Pierre Labrèche. Interactors: A Real-Time Executive with Multiparty Interactions in C++. SIGPLAN
Notices, 25(4):20–32, April 1990. 32

[LN88] K.J. Lin and S. Natarajan. Expressing and Maintaining Timing Constratins in FLEX. In Proc. IEEE
Real-Time Systems Symposium, pages 96–105, 1988. 113

[Mac77] M. Donald MacLaren. Exception Handling in PL/I. SIGPLAN Notices, 12(3):101–104, March 1977.
Proceedings of an ACM Conference on Language Design for Reliable Software, March 28–30, 1977,
Raleigh, North Carolina, U.S.A. 66

[Mar78] T. Martin. Real-Time Programming Language PEARL – Concept and Characteristics. In IEEE Com-
puter Society 2nd International Computer Software and Applications Conference, pages 301–306, 1978.
113

[Mar80] Christopher D. Marlin. Coroutines: A Programming Methodology, a Language Design and an Im-
plementation, volume 95 of Lecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis.
Springer-Verlag, 1980. 5, 14

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall Object-Oriented Series. Prentice-Hall, 1992. 57

[MMPN93] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-oriented Programming
in the BETA Programming Language. Addison-Wesley, 1993. 34

[MMS79] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual. Technical Report
CSL–79–3, Xerox Palo Alto Research Center, April 1979. 3, 68

[RAA
�

88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Hermann, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. Chorus Distributed Operating Systems. Computing Systems,
1(4):305–370, 1988. 122

[Raj91] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, 1991. 120

[RH87] A. Rizk and F. Halsall. Design and Implementation of a C-based Language for Distributed Real-time
Systems. SIGPLAN Notices, 22(6):83–100, June 1987. 7

[Rip90] David Ripps. An Implementaion Guide to Real-Time Programming. Yourdon Press, 1990. 113

[RSL88] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-Time Synchronization Protocols for Mul-
tiprocessors. In Proc. IEEE Real-Time Systems Symposium, pages 259–269, 1988. 120

[SBG
�

90] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy Lowry, Daniel M. Yellin, and
Shaula Alexander Yemini. Hermes: A Language for Distributed Computing. Technical report, IBM
T. J. Watson Research Center, Yorktown Heights, New York, U.S.A., 10598, October 1990. 6

[SD92] A.E.K. Sahraoui and D. Delfieu. ZAMAN, A Simple Language for Expressing Timing Constraints. In
Real-Time Programming, IFAC Workshop, pages 19–24, 1992. 113

[Sha86] Alan Shaw. Software Clocks, Concurrent Programming, and Slice-Based Scheduling. In Proc. IEEE
Real-Time Systems Symposium, pages 14–18, 1986. 113

[Sho87] Jonathan E. Shopiro. Extending the C++ Task System for Real-Time Control. In Proceedings and Ad-
ditional Papers C++Workshop, pages 77–94, Santa Fe, New Mexico, U.S.A, November 1987. USENIX
Association. 32

162 BIBLIOGRAPHY

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September 1990. 120

[Sta87] Standardiseringskommissionen i Sverige. Databehandling – Programspråk – SIMULA, 1987. Svensk
Standard SS 63 61 14. 33

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, third edition, 1997. 1, 3

[Tie88] Michael D. Tiemann. Solving the RPC problem in GNU C++. In Proceedings of the USENIX C++
Conference, pages 343–361, Denver, Colorado, U.S.A, October 1988. USENIX Association. 34

[Tie90] Michael D. Tiemann. User’s Guide to GNU C++. Free Software Foundation, 1000 Mass Ave., Cam-
bridge, MA, U.S.A., 02138, March 1990. 10, 128

[TvRvS
�

90] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp, Sape J. Mullender,
Jack Jansen, and Guido van Rossum. Experiences with the Amoeba Distributed Operating System.
Communications of the ACM, 33(12):46–63, December 1990. 122

[Uni83] United States Department of Defense. The Programming Language Ada: Reference Manual,
ANSI/MIL-STD-1815A-1983 edition, February 1983. Published by Springer-Verlag. 24

[Yea91] Dorian P. Yeager. Teaching Concurrency in the Programming Languages Course. SIGCSE BULLETIN,
23(1):155–161, March 1991. The Papers of the Twenty-Second SIGCSE Technical Symposium on
Computer Science Education, March. 7–8, 1991, San Antonio, Texas, U.S.A. 13

[Yok92] Yasuhiko Yokote. The Apertos Reflective Operating System: The Concept and Its Implementation. In
Proc. Object-Oriented Programming Systems, Languages, and Applications, pages 414–434, 1992. 122

[You91] Brian M. Younger. Adding Concurrency to C++. Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, 1991. 129

Index

U++ option, 11
compiler option, 11
debug option, 10
multi option, 11
nodebug option, 10
nomulti option, 11
noquiet option, 11
noverify option, 11
noyield option, 11
openmp option, 128
quiet option, 11
verify option, 11, 16
yield option, 10, 32

<<, 45
>>, 45, 136, 138, 140
_Accept, 22, 23, 116
_At, 60
_Cormonitor, 29, 39
_Coroutine, 7, 13
_Disable, 61
_DualEvent, 17, 58
_Enable, 61
_Monitor, 27
_Mutex, 7, 18
_Mutex _Coroutine, 29

_Cormonitor, 29, 39
_Mutex class, 27

_Monitor, 27
_Nomutex, 7, 13, 18
_PeriodicTask, 118
_RealTimeTask, 120
_Resume, 60
_ResumeEvent, 58
_SporadicTask, 119
_Task, 7, 29
_Throw, 60
_ThrowEvent, 58
_Timeout, 116
_When, 22, 23, 116
_ _U_CPLUSPLUS_MINOR_ _ , 11
_ _U_CPLUSPLUS_PATCH__ , 11
_ _U_CPLUSPLUS_ _ , 11
_ _U_DEBUG_ _ , 11
_ _U_MULTI_ _ , 11

_ _U_VERIFY_ _ , 11
_ _U_YIELD_ _ , 11

abort, 85, 105
accept-blocked, 22, 23
acceptor, 48
acceptor/signalled stack, 21, 22, 24, 26
access object, 47
acquire, 37, 38
activation point, 14, 30
Active, 16
active, 4, 17
active priority, 121
add, 136, 137, 139
addHead, 136, 137, 139
addTail, 137, 139
aperiodic task, 120
argc, 8
argv, 8
assert, 85
assert.h, 85

barrier, 39
base priority, 121
basic priority-inheritance protocol, 120
block, 39
Blocked, 32
blocked, 4
bound exception, 68
break, 12

labelled, 12
busy wait, 37

cancel, 17
cancelInProgress, 17
cancellation, 77

safe cleanup, 77
cancellation checkpoint, 77
cancelled, 17
chain blocking, 120
class, 7
class object, 5, 7
class type, 7
client, 48
cluster, 8

163

164 BIBLIOGRAPHY

code reuse, 34
communication variables, 14, 29
compilation option

U++, 11
compiler, 11
debug, 10
multi, 11
nodebug, 10
nomulti, 11
noquiet, 11
noverify, 11
noyield, 11
openmp, 128
quiet, 11
verify, 11, 16
yield, 10, 32

u++, 10
compile-time

errors, 81
warnings, 81

concurrency, 8, 107
concurrent exception, 24, 58, 60, 63, 66, 89
condition lock, 38
condition variable, 25
context switch, 4, 17, 22, 109
continue, 12

labelled, 12
convertTime, 118
coroutine, 5, 7, 13

full, 14
inherited members, 15
semi, 14
termination, 15

coroutine main, 13
coroutine monitor, 5, 7, 29
coroutine type, 7
coroutine-monitor type, 7
counter, 36

data structure library, 135
dbx, 128
deadline monotonic, 123
deadlock, 14, 25–27, 29, 47, 74, 102, 120
debugging

symbolic, 128
default action, 60, 61, 67, 86
Dekker, 5
detached, 108
drop, 136, 137, 139
dropHead, 137, 139
dropTail, 137, 139
duration, 113
dynamic

errors, 85

warnings, 85

empty, 26, 37, 38, 136, 137, 139
entry queue, 21, 25
epoch, 114
errors, 81

accept statement, 99
calendar, 100
cluster, 100
compile-time, 81
condition variable, 98
coroutine, 90
default action, 86
dynamic, 85
heap, 101
I/O, 102
lock, 100
mutex type, 93
processor, 102
runtime, 85
static, 81
task, 97
UNIX, 102
warnings, 81, 85

exception, 57
bound, 68
concurrent, 24, 60, 63, 66, 89
default action, 63
dual, 58
inherited members, 59
local, 60, 63
nonlocal, 60, 61, 63, 67, 74
resume, 58
throw, 58
type, 57, 58

exceptional event, 57
execution state, 4

active, 4
inactive, 4

exit, 85, 105
external variables, 15, 30

fd, 48, 52, 54
finite-state machine, 13, 29
fixed-point registers, 40
floating-point registers, 40
frame, 119
free, 105
free routine, 5
front, 26
full coroutine, 14
functor, 64

gdb, 128

BIBLIOGRAPHY 165

getActivePriority, 32
getBasePriority, 32
getClient, 53
getClock, 108
getCluster, 32, 108
getCoroutine, 32
getDetach, 109
getName, 16, 47, 106
getPid, 108
getPreemption, 109
getProcessorsOnCluster, 107
getServer, 52
getSpin, 109
getStackSize, 106
getState, 16, 32
getTask, 109
getTasksOnCluster, 107
getTime, 117
GNU C++, 10, 128
goto

restricted, 13
guarded block, 63

Halt, 16
handler, 57, 63

resumption, 63, 64
termination, 63

handlers, 58
resumption, 58
termination, 58

head, 136, 137, 139
heap area, 15, 30, 127

expansion size, 128
heavy blocking, 110
heavyweight process, 110

idle, 109
implementation problems, 42
implicit scheduler, 21
Inactive, 16
inactive, 4, 17
inheritance, 34

multiple, 36, 72
private, 34
protected, 34
public, 34
single, 34, 35, 70, 71

inherited members
coroutine, 15
exception type, 59
task, 30

initial task
uMain, 8

insertAft, 139

insertBef, 139
internal scheduler, 25
interrupt, 109
intervention, 63
isacquire, 46
istream

isacquire, 46

kernel thread, 9, 107
keyword, additions

_Accept, 22, 23, 116
_At, 60
_Coroutine, 13
_DualEvent, 58
_Mutex, 18
_Nomutex, 13, 18
_PeriodicTask, 118
_RealTimeTask, 120
_Resume, 60
_ResumeEvent, 58
_SporadicTask, 119
_Task, 29
_Throw, 60
_ThrowEvent, 58
_Timeout, 116
_When, 22, 23, 116

labelled
break, 12
continue, 12

light blocking, 110
lightweight process, 8
local exception, 60, 63
lock, 37
locking, 17

main, 8
malloc, 105
migrate, 32
monitor, 5, 7, 27

active, 17
inactive, 17

monitor type, 7
multi-level exit, 12
multikernel, 10, 107
mutex member, 5, 17
mutex queue, 21
mutex type, 17
mutex-type state

locked, 17
unlocked, 17

mutual exclusion, 4

nested loops, 12

166 BIBLIOGRAPHY

non-detached, 108
nonblocking I/O, 45
nonlocal exception, 58, 60, 61, 63, 67, 74, 77

object, 7
OpenMP, 128
ostream

osacquire, 46
out-of-band data, 54
over, 136, 138, 140
owner, 38
owner lock, 37

P, 36
parallel execution, 8
parallelism, 8
periodic task, 118
poll, 62
poller task, 45, 106, 107
pop, 136
pre-emption, 62

default, 127
time, 107
uDefaultPreemption, 127

pre-emptive
scheduling, 11, 32, 105, 109, 128

pred, 139
preprocessor variables

_ _U_CPLUSPLUS_MINOR_ _ , 11
_ _U_CPLUSPLUS_PATCH_ _ , 11
_ _U_CPLUSPLUS_ _ , 11
_ _U_DEBUG_ _ , 11
_ _U_MULTI_ _ , 11
_ _U_VERIFY_ _ , 11
_ _U_YIELD_ _ , 11

priming
barrier, 39

prioritized pre-emptive scheduling, 121
priority, 121
priority levels, 122
priority-inheritance protocol, 120
process

heavyweight, 110
lightweight, 8
UNIX, 110

processor
detached, 108
non-detached, 108
number on cluster, 107
pre-emption time, 107
spin amount, 107

propagate, 60
push, 136
push-down automata, 13

raising, 57, 58, 60
resuming, 58, 60
throwing, 58, 60

Ready, 32
ready, 4
real-time cluster, 123
recursive resuming, 66
release, 37, 38
remove, 137, 139
rendezvous, 23, 75
reraise, 60
reset, 39
resetClock, 117
resume, 16, 17
resumer, 17
resumption, 57
resumption handler, 63, 64
rethrow, 60
return code, 57
Running, 32
running, 4
runtime

errors, 85
warnings, 85

select, 45
select, 106
semaphore, 36
semi-coroutine, 14
server, 48
set_terminate, 72
set_unexpected, 73
setClient, 53
setCluster, 108
setName, 16, 106
setPreemption, 109
setServer, 52
setSpin, 109
setStackSize, 106
shared-memory model, 8
signal, 26
signalBlock, 26
sleep, 105
socket, 48

endpoint, 48
spin

amount, 107
default, 127
lock, 37
uDefaultSpin, 127
virtual processor, 110

sporadic task, 119
stack, 4, 135

acceptor/signalled, 21, 22, 24, 26

BIBLIOGRAPHY 167

amount, 16
automatic growth, 10, 93
current, 16
data structure, 135
default size, 16, 31, 105, 106, 127
diddling, 33
free, 16
minimum size, 105
overflow, 16, 32, 93
recursive resuming, 66
uDefaultStackSize, 127
uMainStackSize, 127
used, 16

stackFree, 16
stackPointer, 16
stackSize, 16
stackUsed, 16
stale readers, 141
Start, 32
starter, 17
static

errors, 81
warnings, 81

static storage, 15, 30
static multi-level exit, 12
status flag, 57
subtyping, 34
succ, 137, 139
suspend, 16, 17
system cluster, 9

tail, 137, 139
task, 5, 7, 29

aperiodic, 120
inherited members, 30
periodic, 118
sporadic, 119
termination, 30

task main, 29
task type, 7
Terminate, 32
terminate, 72
terminate_handler, 72
termination, 57
termination handler, 63
thread, 4

blocked, 4
running, 4

time, 113
time-slice, 109
times, 38
top, 136
total, 39
translator, 7

problems, 42
tryacquire, 37, 38
TryP, 36

u++, 10
uAbort, 85, 105
uBarrier, 39

block, 39
last, 39
reset, 39
total, 39
waiters, 39

uBarrier.h, 40
uBaseCoroutine, 16, 32, 117

cancel, 16
cancelInProgress, 16
cancelled, 16
Failure, 16
getName, 16
getState, 16
resume, 16
resumer, 16
setName, 16
stackFree, 16
stackPointer, 16
stackSize, 16
stackUsed, 16
starter, 16
suspend, 16
verify, 16

uBaseSchedule
add, 122
addInitialize, 122
checkPriority, 122
empty, 122
getActivePriority, 121
getBasePriority, 121
getInheritTask, 121
pop, 122
removeInitialize, 122
rescheduleTask, 122
resetPriority, 122
setActivePriority, 121
setBasePriority, 121

uBaseTask, 31
getActivePriority, 31
getBasePriority, 31
getCluster, 31
getCoroutine, 31
getState, 31
migrate, 31
yield, 31

uBaseTask::Blocked, 32
uBaseTask::Ready, 32

168 BIBLIOGRAPHY

uBaseTask::Running, 32
uBaseTask::Start, 32
uBaseTask::Terminate, 32
� C++ translator, 7
uC++.h, 10, 27, 29, 135
� C++ kernel, 10, 105
uClock

convertTime, 117
getTime, 117
resetClock, 117

uCluster, 106
exceptSelect, 106
getName, 106
getProcessorsOnCluster, 106
getStackSize, 106
getTasksOnCluster, 106
readSelect, 106
select, 106
setName, 106
setStackSize, 106
writeSelect, 106

uColable, 135
listed, 135

uCondition, 25
empty, 25
front, 25
owner, 25
signal, 25
signalBlock, 25
wait, 25
WaitingFailure, 25

uCondLock, 38
broadcast, 38
empty, 38
signal, 38
timedwait, 38
wait, 38

uContext, 40
uDefaultHeapExpansion, 128
uDefaultPreemption, 127

see setPreemption and pre-emption,
uDefaultProcessors, 127
uDefaultSpin, 127

see setSpin and spin,
uDefaultStackSize, 127

see setStackSize and stack,
uDualClass, 59, 76

defaultResume, 59
defaultTerminate, 59
duplicate, 59
message, 59
source, 59
sourceName, 59

uDuration, 113
uEHM

poll, 62, 77
uDualClass, 59, 76
uResumeClass, 59, 76
uThrowClass, 59, 76

uFile, 47
getName, 47
status, 47

uFile.h, 47
uFileAccess, 48

fd, 48
fsync, 48
lseek, 48
read, 48
readv, 48
write, 48
writev, 48

uFloatingPointContext, 41
uLock, 37

acquire, 37
release, 37
tryacquire, 37

uMain, 8
argc, 8
argv, 8
uRetCode, 8

uMain::main, 8
uMainStackSize, 127

see setStackSize and stack,
uncaught_exception, 73
unexpected, 72
unexpected_handler, 73
unikernel, 10, 107
UNIX epoch, 114
UNIX process, 107
unlocking, 17
uOwnerLock, 38

acquire, 38
owner, 38
release, 38
times, 38
tryacquire, 38

uPeriodicBaseTask
getPeriod, 119
setPeriod, 119

uProcessor, 108
getClock, 108
getCluster, 108
getDetach, 108
getPid, 108
getPreemption, 108
getSpin, 108

BIBLIOGRAPHY 169

getTask, 108
idle, 108
setCluster, 108
setPreemption, 108
setSpin, 108

uQueue
add, 137
addHead, 137
addTail, 137
drop, 137
dropHead, 137
dropTail, 137
empty, 137
head, 137
remove, 137
succ, 137
tail, 137

uQueueIter, 137
>>, 138
over, 138

uRealTimeBaseTask
getDeadline, 120
setDeadline, 120

uRendezvousAcceptor, 75
uResumeClass, 59, 76
uRetCode, 8
uSemaphore, 36

counter, 36
empty, 36
P, 36
TryP, 36
V, 36

uSemaphore.h, 37
uSeqable, 135

listed, 135
uSeqIter, 139

>>, 139
over, 139

uSeqIterRev, 139
>>, 140
over, 140

uSequence
add, 139
addHead, 139
addTail, 139
drop, 139
dropHead, 139
dropTail, 139
empty, 139
head, 139
insertAft, 139
insertBef, 139
pred, 139

remove, 139
succ, 139
tail, 139

user cluster, 9
usleep, 105
uSocket.h, 50
uSocketAccept, 54, 117

accept, 55
close, 55
fd, 55
getpeername, 55
getsockaddr, 55
getsockname, 55
read, 55
readv, 55
recv, 55
recvfrom, 55
recvmsg, 55
send, 55
sendmsg, 55
sendto, 55
write, 55
writev, 55

uSocketClient, 50, 117
fd, 51
getpeername, 51
getServer, 51
getsockname, 51
read, 51
readv, 51
recv, 51
recvfrom, 51
recvmsg, 51
send, 51
sendmsg, 51
sendto, 51
setServer, 51
write, 51
writev, 51

uSocketServer, 52
fd, 53
getClient, 53
getpeername, 53
getsockaddr, 53
getsockname, 53
read, 53
readv, 53
recv, 53
recvfrom, 53
recvmsg, 53
send, 53
sendmsg, 53
sendto, 53

170 BIBLIOGRAPHY

setClient, 53
write, 53
writev, 53

uSporadicBaseTask
getFrame, 120
setFrame, 120

uStack, 135
add, 136
addHead, 136
drop, 136
empty, 136
head, 136
pop, 136
push, 136
top, 136

uStackIter, 136
>>, 136
over, 136

uThisCluster, 107
uThisCoroutine, 17
uThisProcessor, 109
uThisTask, 32
uThrowClass, 59, 76
uTime, 114

V, 36
verify, 16
version number, 11
virtual processor, 9, 107, 111

wait, 25
waiters, 39
warnings

compile-time, 81
runtime, 85

yield, 32, 97, 107
compilation option, 10, 32
preprocessor, 11

yield, 31, 32, 77

	Title
	Contents
	Preface
	uC++ Extensions
	Design Requirements
	Elementary Execution Properties
	High-level Execution Constructs

	uC++ Translator
	Extending C++
	Compile Time Structure of a uC++ Program
	uC++ Runtime Structure
	Cluster
	Virtual Processor

	uC++ Kernel
	Using the uC++ Translator
	Compiling a uC++ Program
	Preprocessor Variables

	Labelled Break/Continue
	Coroutine
	Coroutine Creation and Destruction
	Inherited Members
	Coroutine Control and Communication

	Mutex Type
	Scheduling
	Implicit Scheduling
	External Scheduling
	Accept Statement
	Breaking a Rendezvous
	Accepting the Destructor
	Commentary

	Internal Scheduling
	Condition Variables and Wait/Signal Statements
	Commentary

	Monitor
	Monitor Creation and Destruction
	Monitor Control and Communication

	Coroutine Monitor
	Coroutine-Monitor Creation and Destruction
	Coroutine-Monitor Control and Communication

	Task
	Task Creation and Destruction
	Inherited Members
	Task Control and Communication

	Commentary
	Inheritance
	Explicit Mutual Exclusion and Synchronization
	Counting Semaphore
	Commentary

	Lock
	Owner Lock
	Condition Lock
	Barrier

	User Specified Context
	Predefined Floating-Point Context

	Implementation Restrictions

	Input/Output
	Nonblocking I/O
	C++ Stream I/O
	UNIX File I/O
	File Access

	BSD Sockets
	Client
	Server
	Server Acceptor

	Exceptions
	EHM
	uC++ EHM
	Exception Type
	Creation and Destruction
	Inherited Members

	Raising
	Nonlocal Propagation
	Enabling/Disabling Propagation
	Concurrent Propagation

	Handler
	Termination
	Resumption
	Recursive Resuming
	Preventing Recursive Resuming
	Commentary

	Bound Exceptions
	Deficiencies of Standard C++ Exception Handling
	Object Binding
	Bound Handlers
	Matching
	Termination
	Resumption

	Inheritance
	Predefined Exception Routines
	terminate/set_terminate
	unexpected/set_unexpected
	uncaught_exception

	Programming with Exceptions
	Throw Exception-Type
	Resume Exception-Type
	Dual Exception-Type

	Predefined Exception-Types
	Implicitly Enabled Exception-Types
	Breaking a Rendezvous

	Cancellation
	Using Cancellation
	Enabling/Disabling Cancellation
	Commentary

	Errors
	Static (Compile-time) Warnings/Errors
	Dynamic (Runtime) Warnings/Errors
	Assertions
	Termination
	Messages
	Default Actions
	Coroutine
	Mutex Type
	Task
	Condition Variable
	Accept Statement
	Calendar
	Locks
	Cluster
	Heap
	I/O
	Processor
	UNIX

	uC++ Kernel
	Pre-emptive Scheduling and Critical Sections
	Memory Management
	Cluster
	Processors
	Implicit Task Scheduling
	Idle Virtual Processors
	Blocking Virtual Processors

	Real-Time
	Time-Defined Delays
	Duration and Time
	Timeout Operations
	Accept
	I/O

	Clock
	Periodic Task
	Sporadic Task
	Aperiodic Task
	Priority Inheritance Protocol
	Real-Time Scheduling
	User-Supplied Scheduler
	Real-Time Cluster
	Deadline Monotonic Scheduler

	Miscellaneous
	Default Values
	Task
	Processor
	Heap

	Symbolic Debugging
	Installation Requirements
	Installation
	Reporting Problems
	Contributors

	uC++ Grammar
	Data Structure Library (DSL)
	Stack
	Iterator

	Queue
	Iterator

	Sequence
	Iterator

	Example Programs
	Readers And Writer
	Bounded Buffer
	Using Monitor Accept
	Using Monitor Condition
	Using Task
	Using P/V

	Disk Scheduler
	UNIX File I/O
	UNIX Socket I/O
	Client - UNIX/Datagram
	Server - UNIX/Datagram
	Client - INET/Stream
	Socket - INET/Stream

	Bibliography
	Index

