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Abstract

This thesis explores the problem of maintaining a consistent shared state in replication-based

groupware systems. Whereas more traditional systems might maintain consistency via locking

mechanisms, we consider a transformation-based approach that creates the illusion of a common

execution history across all sites in the system. In this thesis, we develop a formal treatment of

the theory of operation transforms, using techniques based on Ressel’s[18] interaction models. We

derive important results about the preconditions required for transformation-based algorithms to

work, and we show equivalence between two existing transformation algorithms. We then use

our results to build a provably correct generic framework for constructing transformation-based

systems. We demonstrate the use of our framework by using it to implement a shared text buffer.
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Chapter 1

Introduction

1.1 Introduction and Motivation

This thesis is concerned with distributed collaboration on shared data. Specifically, we assume

that a group of n collaborators (each of whom is located at some site) is working together to

maintain a shared state. For efficiency, each collaborator has a local copy of the state, upon

which he may perform updates. Updates performed locally are then transmitted to the other

collaborators, who also apply them.

The canonical example of this scenario is distributed text editing. In this example, the shared

state is a text buffer. Each collaborator edits his local copy of the state by issuing calls to the

following procedures:

insert(p, s)—inserts the string s into the buffer at position p, p ≥ 1;

delete(p, l)—deletes l consecutive characters from the buffer starting at position p, p ≥ 1.

The insertions and deletions are transmitted to the other collaborators, who perform them as

well.

1.1.1 Definition of Correctness

Conceptually, there is only one shared state in the system. The local copies are merely snapshots

that represent each collaborator’s knowledge of the “true” state (which itself is never material-

1



CHAPTER 1. INTRODUCTION 2

ized). Therefore, we would like the local copies to “agree” with each other in some sense. The

sense in which the local copies of the shared state must agree with each other will form the basis

for our definition of correctness in the system.

We cannot insist that at every instant, the local copies be identical at every site, since at any

instant, there may be updates in transit. If an update u is in transit at time t then at time t,

a site i may have received and applied u, while a site j has not. Hence, we cannot expect that

i’s copy of the state will be the same as j’s. Further, in a large, active system with several sites,

there may be updates in transit at every (or almost every) instant, and so it may be the case

that no two sites ever have the same local copy of the state.

Ellis and Gibbs[6] give a two-part definition of correctness in groupware systems. A groupware

system is considered correct if it satisfies the following two properties:

1) The Precedence Property: if update a causally succeeds update b (in the sense of Lamport’s

happens before relation[13]), then at all sites, a is applied after b;

2) The Convergence Property: all local copies of the state are identical at quiescence,

where quiescence is defined as a state in which all updates have been applied and no updates are

in transit.

The Precedence Property states that no update is applied until it makes sense to apply it, i.e.,

all prerequisite updates have been applied. For example if the shared state is a text buffer, initially

empty, and site 1 performs insert(1, “abc”) followed by delete(3, 1), then all sites must perform

the insertion before the deletion; otherwise they may attempt to delete the third character of an

empty buffer, which would cause an error.

The Convergence Property does not insist that local copies be identical at all times; instead it

only insists that they be identical when the system is quiescent. Quiescence occurs, for example,

after all sites have finished performing updates and all transmitted updates have been received and

applied. Hence the Convergence Property implies that when the collaborative effort is “finished,”

each collaborator’s local copy of the state will be the same, which is certainly a desirable property.

The problem with the Convergence Property is that it only applies to quiescent systems; it

says nothing about the local copies of the state in a non-quiescent system. In particular, any

system that never becomes quiescent satisfies the Convergence Property vacuously.

For example, suppose that a network partition has occurred. Such a system can never be
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quiescent, since updates can never cross the partition. Since the system can never be quiescent,

it satisfies the Convergence Property. Hence, individual sites can literally do whatever they want

and still satisfy the Convergence Property. Clearly, we need a stronger correctness criterion.

A better definition of convergence would be as follows: convergence holds if whenever sites

i and j have performed the same set of updates, then i and j have identical local copies of the

state. Before we can use this definition, we must define what we mean by “same”:

Definition 1.1 An update u is a triple (O(u), S(u), T (u)) that encapsulates an operation O(u)

to be performed, the site S(u) at which u originated and a timestamp T (u) that indicates the

context in which u executed. Updates u1 and u2 are the same (or equal) if O(u1) = O(u2),

S(u1) = S(u2), and T (u1) = T (u2).

We will be more precise about the meaning of “timestamp” later.

Definition 1.2 Let S1 and S2 be sets of updates. S1 and S2 are the same if there is a bijective

mapping π : S1 → S2 such that for all u ∈ S1, π(u) is the same as u.

Our modified definition of convergence does not require quiescence as a prerequisite; hence it

is more widely applicable than Ellis and Gibbs’ definition. However, even this definition is not

universally applicable, as it presumes the existence of two sites with exactly the same execution

history at a given instant. In a large, active system, this is not a realistic expectation either.

Instead, we define convergence as follows:

Definition 1.3 (Strong Convergence Property) A groupware system is convergent if the

local copy of the shared state at each site s is uniquely determined by the initial shared state and

the set of updates that have been applied at s (and is not dependent upon s itself).

Clearly this definition of convergence implies the previous two formulations; moreover, unlike

the other formulations, this one can be applied at any instant in time. Hence, we will use the

following definition of correctness:

Definition 1.4 A groupware system is correct if it satisifies the Precedence Property and the

Strong Convergence Property.
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1.1.2 Enforcing Strong Convergence

As we shall see later, it is easy to ensure (via suitable delay mechanisms) that the Precedence

Property will hold. On the other hand, it is easy to conceive scenarios in which the Strong

Convergence Property fails. For example, assume that the shared state is a text buffer, initially

empty, and that there are two sites, 1 and 2. Site 1 executes insert(1, “a”) and transmits the

update to Site 2. At the same time, Site 2 executes insert(1, “b”) and transmits the update to

Site 1. As a result, Site 1 executes insert(1, “a”) followed by insert(1, “b”), while Site 2 executes

insert(1, “b”) followed by insert(1, “a”). Hence the local copy of the state is “ba” at Site 1 and

“ab” at Site 2. Since both sites executed the same set of updates with different results, the Strong

Convergence Property fails. (Note that because neither of the two insertions causally preceded

the other, the Precedence Property holds in this case.)

A traditional approach to enforcing the Strong Convergence Property would be to construct

a locking mechanism in which at most one site may update the shared state at a time[10, 12]. In

general, this approach is too strict and will cause unreasonable delays as sites wait for their turn

to apply their respective updates. A more practical approach would be to slice the shared state

into regions (for example, a shared text buffer representing a book could be split into chapters).

Each region could then have its own lock. This scheme could allow more than one concurrent

update on the shared state, so long as each site is updating a different region. However, even a

finer degree of granularity such as this could lead to unnecessary delays.

Indeed, a locking system of any granularity has the potential to introduce unnecessary delays

into the system. The very presence of a distributed lock implies that a site must contact a lock

server before it may perform updates. If the network is slow, or down, then the site can do little or

no work. Furthermore, distributed locking algorithms are very awkward to implement and prone

to failure once in place. If not managed properly, distributed locking can lead to distributed

deadlock. Further, if the lock server fails and the network becomes partitioned, sites might elect

multiple lock servers and there would be no mutual exclusion at all.

Other concurrency control mechanisms include turn-taking[9], in which control of the doc-

ument is passed from participant to participant in some (possibly pre-determined) order, and

transactions[5], in which sequences of operations are guaranteed to execute as an atomic unit,

or not at all. However, there are disadvantages to these mechanisms as well. Turn-taking is

simply a restricted form of locking and all of the above-mentioned problems with locking apply

to turn-taking. Transactions introduce the potential for forced rollbacks, if the execution history

ceases to be serializable. Further, transactions are often implemented using distributed locks,



CHAPTER 1. INTRODUCTION 5

and again, the problems associated with locks can manifest themselves.

A more promising approach to concurrency control, known as operation transforms, was first

proposed by Ellis and Gibbs[6], and later revised by Cormack[3] and Ressel et al[18]. Instead of

locking the shared state, all updates are allowed to proceed immediately (modulo unavoidable

delays imposed by the Precedence Property). Central to the success of this approach is the

realization that inconsistencies arise because transmitted updates are not always executed in the

same context at each site. To correct this problem, updates are transformed before they are

applied. The transformed updates have the property that, when applied, they create the illusion

that all updates were applied in the intended execution context, and in the intended order. In

this way, consistency is preserved.

1.1.3 Goals

The theory of operation transforms is not well studied. Indeed, Cormack[4] has shown that the

algorithm of Ellis and Gibbs is incorrect, and furthermore, Hendrie[11] has shown that Cormack’s

algorithm is also incorrect. Ressel[18] never gave a complete proof of the correctness of his

algorithm. This thesis will present a rigourous study of the theory of operation transforms,

including a proof of the correctness of Ressel’s algorithm, and a proof of equivalence between

Ressel’s algorithm and a corrected version of Cormack’s algorithm. It will pay special attention

to the preconditions that must hold in order for the approach to work.

The operation transforms approach to building groupware systems is sufficiently generic that

it should be possible to construct a library of code to support the construction of transformation-

based objects. Such a library could then be packaged with a programming language distribution,

or form the basis for a toolkit for constructing distributed systems. It may also be useful as part

of a toolkit for constructing operating systems in general. This thesis will discuss the construction

of such a library in the programming language ML.

1.2 Outline

Chapter 2 will contain a summary of the algorithms and notations of Cormack and Ressel. Chap-

ter 3 will contain a study of the theory of operation transforms. Chapter 4 will discuss a framework

for constructing transformation-based objects in ML. Chapter 5 will discuss applications of the

framework discussed in Chapter 4. Chapter 6 will summarize the results of this thesis and present

avenues for future investigation.



Chapter 2

Related Work

In this chapter, we present a survey of work that has been done on operation transforms to date.

The approach was first proposed by Ellis and Gibbs[6] in 1989. Their algorithm, called dOPT,

was proved incorrect by Cormack[4] in 1995. Cormack presented an algorithm, called CCU[3],

and intended as a correction to dOPT. A counterexample to CCU was found by Hendrie[11] in

1997. Independently of Cormack, Ressel et al proposed adOPTed[18] as a correction to dOPT in

1996.

This chapter summarizes the algorithms of Cormack and Ressel, highlighting the common

features of the two algorithms, and introducing the notation that we will use for the remainder

of this thesis.

2.1 Detecting Conflicting Updates

Both the CCU algorithm and the adOPTed algorithm use timestamps to detect conflicting up-

dates. Timestamps are defined as follows:

Definition 2.1 A timestamp is a tuple t = (x1, x2, . . . , xn) where each xi represents the number

of updates that are known to have executed at site i. We denote by t[i] the i-th component of the

timestamp t.

Definition 2.2 Given a timestamp t = (x1, . . . , xn), the norm of t, denoted |t|, is defined by the

sum x1 + · · · + xn.

6
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Definition 2.3 Given timestamps t1 and t2, we say that t1 ⊂ t2 (t1 is earlier than t2) if t1 6= t2

and t1[i] ≤ t2[i] for each i. We say that t1 ⊆ t2 if t1 ⊂ t2 or t1 = t2.

Definition 2.4 Let u1 and u2 be updates. We say that u1 and u2 are concurrent (and write

u1||u2), if T (u1) 6⊆ T (u2) and T (u2) 6⊆ T (u1).

Definition 2.5 Let t1 and t2 be timestamps. We define the supremum of t1 and t2, denoted

sup (t1, t2), to be the smallest (in the sense of Definition 2.3) timestamp t such that t1 ⊆ t and

t2 ⊆ t. Similarly, we define the infimum of t1 and t2, denoted inf (t1, t2) to be the largest (in the

sense of Definition 2.3) timestamp such that t ⊆ t1 and t ⊆ t2.

It is not hard to see that if t1 = (a1, . . . , an) and t2 = (b1, . . . , bn), then sup (t1, t2) = (max (a1, b1),

. . . ,max (an, bn)) and inf (t1, t2) = (min (a1, b1), . . . ,min (an, bn)). Although we can extend Defi-

nition 2.5 in the obvious way to any finite set of timestamps, the above formulation will suffice

for our purposes.

Definition 2.6 Let u be an update. We define T ′(u) to be the timestamp such that T ′(u)[S(u)] =

T (u)[S(u)] + 1 and T ′(u)[i] = T (u)[i] if i 6= S(u).

The timestamp T ′(u) represents the timestamp at site S(u) after u has been applied.

The relation ⊆ establishes a partial order on timestamps. This partial order implements

exactly Lamports’s happens-before relation[13]. We will also define a total order on timestamps

that extends ⊆:

Definition 2.7 Let t = (t1, t2, . . . , tn) be a timestamp. Let 1 ≤ i < j ≤ n. We denote by t[i : j]

the vector (ti, . . . , tj). For 1 ≤ i ≤ n, we define t[i : i] ≡ t[i]. Define dim (t) = n.

Definition 2.8 Define a relation < on timestamps so that for timestamps t1, t2 with dim (t1) =

dim (t2) = n, t1 < t2 if t1[1] < t2[1] or (t1[1] = t2[1] and t1[2 : n] < t2[2 : n]).

Proposition 2.1 Let t1 and t2 be timestamps with t1 ⊆ t2. Then t1 ≤ t2.

Proof Easy.

Having completed the definition of timestamps, we can reformulate the Precedence Property

as follows:
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Definition 2.9 A groupware system is said to satisfy the Precedence Property if for all updates

u1 and u2, if T (u1) ⊂ T (u2), then u1 is applied before u2 at all sites.

Definition 2.10 Let u be an update issued in a groupware system. The definition context of u,

denoted DC(u)1, is the set of updates that had been applied at site S(u) when u was issued.

For any groupware system that satisfies the Precedence Property, there is a one-to-one corre-

spondence between the definition context of an update u and T (u).

In the remaining sections we will introduce the CCU algorithm and the adOPTed algorithm.

2.2 The CCU Algorithm

2.2.1 Transformation Operators: /, \, and ˆ

Let X be the set of all possible values of the shared state. Suppose a groupware system supports

a set O ⊆ XX of possible operations on X. If the shared state is a text buffer, then X is the set

of all strings (over some alphabet), and O might equal {insert(s, p)|s a string, p ∈ Z, p ≥ 1}, the

set of all possible string insertions.

Suppose that, during the operation of the groupware system, site i issues an update ui, while

site j concurrently issues an update uj . Then ui||uj . The updates ui and uj are broadcast to all

sites. Since ui and uj are concurrent, uj 6∈ DC(ui) and ui 6∈ DC(uj). Site j receives the update

ui, but the set of updates that have been applied at site j does not match DC(ui) (since ui had

not been applied at site i when ui was issued).

Instead of applying ui directly, site j adjusts ui to create a new update that includes uj in its

definition context. We capture this adjustment in a binary operator, / : O ×O → O. Intuitively,

for operations o1 and o2, o1/o2 (read “o1 after o2”) represents the operation with the semantics o1

would have if its definition context had included o2. In other words, o1/o2 is the operation that

the issuer of o1 would have transmitted, had he known that o2 had been applied. See Definition

2.11 for a formal definition. Site j then applies O(ui)/O(uj) to its copy of the local state.

Exactly how the / operator transforms operations is up to the application designer. Often,

there will be a natural choice.

1This notation is due to Sun[21].
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Example Suppose X is the set of all strings and O is the set of all string insertions, as above.

Then one might define the / operator as follows:

insert(s1, p1)/insert(s2, p2) =

{

insert(s1, p1) if p1 < p2

insert(s1, p1 + |s2|) if p1 ≥ p2

Here, a call to insert(s1, p1) (issued, say, at site i) has been issued concurrently with a call to

insert(s2, p2) (issued, say, at site j). When insert(s1, p1) is applied at site j, it should be trans-

formed so that the point of insertion is the same as it was at site i. If p1 < p2, then s2 was

inserted to the right of where s1 is to be inserted. Hence, the point of insertion is unchanged,

and no transformation is needed. If p1 > p2, then s2 was inserted to the left of where s1 is to

be inserted. Hence, the intended point of insertion has shifted to the right by an offset equal to

the length of s2, and we maintain the intended semantics of the insertion by transforming it to

insert(s1, p1 + |s2|). If p1 = p2, then the two insertions occurred at the same point, and which

comes first is an arbitrary choice. Here, we have chosen to let the previously-inserted string occur

first.

At site i, the situation is similar. Update uj arrives, but its definition context does not contain

the update ui, which has already been applied at site i. Thus, uj must be adjusted to account for

the already-applied ui at site i. However, we cannot use the / operator. Continuing the above

example, consider what would happen if p1 = p2. Then site j performs insert(p1, s2) followed by

insert(p1 + |s2|, s1). If site i applies the / operator to the incoming O(uj), then site i performs

insert(p1, s1) followed by insert(p1 + |s1|, s2). As a result, s2 occurs directly after s1 at site i and

directly before s1 at site j. The local copies of the state at sites i and j are now different and the

Strong Convergence Property fails.

Instead, we introduce a second transformation operator, called \. The operators / and \ are

defined as follows:

Definition 2.11 Define operators / : O × O → O and \ : O × O → O. For operations o1 and

o2, o1/o2 (read “o1 after o2”) and o1\o2 (read “o1 before o2”) have the property that for all states

x ∈ X, (o1\o2)(o2(x)) = (o2/o1)(o1(x)).

With / defined as above, we define \ for string insertions as follows:

insert(s1, p1)\insert(p2, s2) =

{

insert(s1, p1) if p1 ≤ p2

insert(s1, p1 + |s2|) if p1 > p2
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Note that this formulation of \ only differs from our formulation of / for string insertions when

p1 = p2. In this case, the string s1 is placed before s2 instead of after it. Thus, if site j transforms

the incoming O(ui) to O(ui)/O(uj) and site i transforms the incoming O(uj) to O(uj)\O(ui),

then the resulting state will be identical at sites i and j, and Strong Convergence still holds.

A major question that comes to mind when considering the operators / and \ is which of the

two operators a given site should use to transform operations. The critical requirement is that

if u1||u2 then any site that performs u1 first must transform O(u2) to O(u2)/O(u1) and any site

that performs u2 first must transform O(u1) to O(u1)\O(u2) (or vice versa). In other words, if

sites i and j apply u1 and u2 in different orders, then they must use different transformation

operators.

One way to guarantee that this condition will hold is to use the timestamps of the conflicting

updates: if u1||u2 with T (u1) < T (u2) then any site that applies u2 first will use / to transform

u1 and any site that applies u1 first will use \ to transform u2. This behaviour is captured in a

new operator, ,̂ that is defined over updates:

Definition 2.12 Let U be the set of all possible updates. Define a partial operator ˆ : U ×U ⇀ U

such that

u1ˆu2 =

{

(O(u1)/O(u2), S(u1), T
′(u2)) if T ′(u1) > T ′(u2)

(O(u1)\O(u2), S(u1), T
′(u1)) if T ′(u1) < T ′(u2)

,

for all updates u1, u2 with T (u1) = T (u2) and S(u1) 6= S(u2). If T (u1) 6= T (u2) or S(u1) = S(u2),

then u1ˆu2 is undefined.

The operator ˆ allows us to characterize the behaviour of transformations as follows: for

operations u1 and u2 with T (u1) = T (u2), a site that performs u1 first transforms u2 to u2ˆu1,

and vice versa. However, there is another issue to address: what to do about more complex

interaction scenarios. In a real groupware system we cannot expect that there will only be at

most two updates in transit at any given time. We must be able to handle interaction scenarios

of arbitrary complexity.

We begin by defining update sequences:

Definition 2.13 Let u1 and u2 be updates with T (u2) 6⊆ T (u1). We denote by u1; u2 the update

sequence consisting of u1 followed by u2. For updates u1, . . . , un with T (ui) 6⊆ T (uj) for 1 ≤ j <

i ≤ n, we define the sequence u1; . . . ; un analogously.
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Definition 2.14 Let u1; . . . ; un be an update sequence, x ∈ X. The effect of u1; . . . ; un on x,

denoted (u1; . . . ; un)(x) is the value O(un)(· · · (O(u1)(x)) · · · ).

Definition 2.15 We say that update sequences u1; . . . ; un and u′

1; . . . ; u
′

n are equivalent (and

write u1; . . . ; un ≡ u′

1; . . . ; u
′

n) if (u1; . . . ; un)(x) = (u′

1; . . . ; u
′

n)(x) for all x ∈ X.

We use the notation U1, U2, etc., to denote update sequences.

Next we extend ˆ to work over sequences of updates:

Definition 2.16 Let U = u1; . . . ; un be an update sequence. U is called connected if T (ui) =

T ′(ui−1) for all 1 < i ≤ n. T (u1) is called the origin of U , denoted T (U), and T ′(un) is called

the terminus of U , denoted T ′(U).

Proposition 2.2 Let u1 and u2 be updates with T (u1) = T (u2). Then u1; u2ˆu1 and u2; u1ˆu2

are connected.

Proof Follows immediately from Definition 2.12.

Definition 2.17 Let λ denote the empty update sequence. Then we define ˆ over update sequences

as follows:

Uˆλ = U (2.1)

λˆU = λ (2.2)

U1 (̂U2; U3) = (U1ˆU2)̂ U3 (2.3)

(U1; U2)̂ U3 = U1ˆU3; (U2 (̂U3ˆU1)). (2.4)

The first three components of this definition are straightforward; the fourth is not so intuitive.

Rule (2.4) says that the sequence U1; U2 is correctly transformed to account for the sequence U3

by first transforming U1 with respect to U3 (yielding U1ˆU3) and then transforming U2. We

cannot transform U2 against U3 directly because the definition context of updates in U2 contains

the updates in U1, while the definition context of updates in U3 does not. Instead, U3 must be

transformed to account for U1 (yielding U3ˆU1) and then U2 may be transformed against the

result.

The following theorem about ˆ is proved in Cormack[3]:
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Theorem 2.1 Let U1 and U2 be update sequences. Then for all x ∈ X,

(U1; (U2ˆU1))(x) = (U2; (U1ˆU2))(x).

Theorem 2.1 states that the analogue of the defining property of \ (presented in Definition

2.11) holds for sequences.

The extended definition of ,̂ combined with Theorem 2.1, provides a procedure for handling

more complicated interaction scenarios: an update u arriving at site i is transformed against the

sequence of updates that have been applied at site i, and with which u is concurrent.

2.2.2 Canonical Update Sequences: [] and |

Let W denote a set of updates. The CCU algorithm operates by arranging the elements of W

into a sequence and then applying the updates. By the Precedence Property, only sequences

that respect the causal order are admissible; however, within the causal order, any sequence of

updates is a valid candidate. CCU always chooses a canonical sequence, defined as follows:

Definition 2.18 Let W be a set of updates with |W | = n and having distinct timestamps. The

canonical update sequence for W , denoted [W ], is the sequence u1; . . . ; un with each ui ∈ W and

T (ui) < T (ui+1) for 1 ≤ i ≤ n − 1.

In the CCU algorithm, each site i maintains a set Wi of updates that have been applied at

site i. When an update arrives, the algorithm augments Wi with the incoming update and the

new canonical sequence [Wi] is computed and applied to the initial state.

The algorithm for computing [W ] for a set W of updates is expressed via a binary function |,

defined as follows:

Definition 2.19 Let W be a set of updates, u0 an update. Denote by W<u0 the set {u ∈

W |T ′(u) < T ′(u0)} and by W⊂u0 the set {u ∈ W |T ′(u) ⊂ T ′(u0)}.

Definition 2.20 Define a binary operator | on sets of updates. Given sets W1 and W2 of updates,

W1|W2 computes a sequence of updates, ordered according to < that represents the updates in

W1, adjusted under the assumption that all of the updates in W2 have already been applied. | is

computed as follows:

W |W = λ for all W

W1|W2 =

{

(W<u
1

|W2); (u (̂W<u|W⊂u)) if u 6∈ W2

(W<u
1

|W<u
2

)̂ (u (̂W<u
2

|W⊂u)) if u ∈ W2

,
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where W = W1 ∪ W2 and u ∈ W with T ′(v) ≤ T ′(u) for all v ∈ W .

Canonical update sequences are then computed as follows:

[W ] = W |{}.

2.2.3 The Algorithm

The CCU algorithm at site s is as follows:

Initialization:

xs ← x0 ; initial state

Ws ← {} ; update history

Ts ← (0, . . . , 0) ; timestamp

Occurrence of local operation o:

let T = Ts with sth component incremented

transmit (o, s, Ts) to other sites

Ws ← Ws ∪ {(o, s, T )}

xs ← o(xs)

Ts ← T

Receipt of update u from site r:

if T (u) 6⊆ Ts then

set u aside and revisit when T (u) ⊆ Ts

else

Ws ← Ws ∪ {(O(u), S(u), T ′(u))}

xs ← [Ws](x0)

Ts ← sup (Ts, T
′(u))

The CCU algorithm, as presented above, has a serious inefficiency: upon the arrival of each

new update u from the network, the entire canonical update sequence is recomputed and then

reapplied to the initial state. Hence the time required to compute the new state grows with the

number of updates that have been performed. We would prefer an algorithm that would permit

us to apply a single transformed update to the current state. To address this problem, Cormack

claims the following result about |:
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Theorem 2.2 (CCU Theorem 2) For sets W1 and W2 of updates,

([W2]; (W1|W2))(x) = [W1 ∪ W2](x)

for all x ∈ X.

Armed with Theorem 2.2, we can replace the lines

Ws ← Ws ∪ {u}

xs ← [Ws](x0)

with

xs ← ((Ws ∪ {u})|Ws)(xs)

Ws ← Ws ∪ {u}.

Under this modification, an incoming update u is transformed against those already-applied

updates with which it is concurrent, and then applied to xs. Instead of applying the entire

update sequence to the initial state with every incoming update, we simply transform and apply

the new update to the current state.

The unmodified algorithm, by recomputing canonical update sequences at every step of the

algorithm, guarantees that at every site, updates are always issued in canonical order. The

modified algorithm does not have this property; it admits non-canonical update sequences, but

ensures that these sequences have the same effect as the canonical sequence, when applied to the

local state.

2.2.4 The Hendrie Counterexample

Theorem 2.2 transforms the original CCU algorithm from a backtracking algorithm to one that

always moves forward (i.e. previous work is never undone). However, Hendrie[11] showed that

Theorem 2.2 is actually false and gave the following example that causes the modified CCU al-

gorithm to fail:

Example (Hendrie) Let X = {rock, paper, scissors}. Let O = {Rock, Paper, Scissors}, where

Rock(x) = rock, Paper(x) = paper, and Scissors(x) = scissors for all x ∈ X. Define / so that

Rock/Paper = Paper/Rock = Paper

Paper/Scissors = Scissors/Paper = Scissors

Scissors/Rock = Rock/Scissors = Rock.
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With / defined in this way, the following definition of \ is consistent with Definition 2.11:

Rock\Paper = Paper\Rock = Paper

Paper\Scissors = Scissors\Paper = Scissors

Scissors\Rock = Rock\Scissors = Rock.

For example,

(Paper; Rock/Paper)(x) = (Paper; Paper)(x) = paper

(Rock; Paper\Rock)(x) = (Rock; Paper)(x) = paper

for all x ∈ X. Now suppose that there are three sites and that updates u1 = (Scissors, 1, (0, 0, 0)),

u2 = (Paper, 2, (0, 0, 0)), and u3 = (Rock, 3, (0, 0, 0)) are issued concurrently at sites 1, 2, and

3, respectively. The choice of initial state is arbitrary, as the behaviour of the updates in O is

not dependent on the value of the state. Timestamps are incremented by CCU when states are

processed, so these updates are stored as u′

1 = (Scissors, 1, (1, 0, 0)), u′

2 = (Paper, 2, (0, 1, 0)), and

u′

3 = (Rock, 3, (0, 0, 1)). Since (0, 0, 1) < (0, 1, 0) < (1, 0, 0), the canonical order for these updates

is u′

3; u
′

2; u
′

1. Thus, for W = {u′

1, u
′

2, u
′

3}, we have

[W ](x) = [{u′

1, u
′

2, u
′

3}](x) = (u′

3; u
′

2ˆu
′

3; (u
′

1ˆu
′

3)̂ (u′

2ˆu
′

3))(x)

= O((u′

1ˆu
′

3)̂ (u′

2ˆu
′

3))(O(u′

2ˆu
′

3)(O(u′

3)(x)))

= ((Scissors/Rock)/(Paper/Rock))((Paper/Rock)(Rock(x)))

= Paper(Paper(Rock(x)))

= paper.

According to Theorem 2.2, the following calculation should produce the same result:

([{u′

1, u
′

2}]; ({u
′

3}|{u
′

1, u
′

2}))(x) = ((u′

2; u
′

1ˆu
′

2); (u
′

3ˆu
′

2)̂ (u′

1ˆu
′

2))(x)

= O((u′

3ˆu
′

2)̂ (u′

1ˆu
′

2))(O(u′

1ˆu
′

2)(O(u′

2)(x)))

= ((Rock\Paper)\(Scissors/Paper))((Scissors/Paper)(Paper(x)))

= Scissors(Scissors(Paper(x)))

= scissors.

Since the second calculation results in scissors and not paper, we have a counterexample to The-

orem 2.2. This counterexample translates directly into a counterexample to the modified CCU
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algorithm. The first calculation represents the transformations that take place if the updates

arrive at a site in canonical order (i.e. u3; u2; u1). The second calculation represents the trans-

formations that take place if the updates arrive at a site in the order u2; u1; u3. Hence if one site

receives the updates in the order u3; u2; u1 and another site receives them in the order u2; u1; u3,

then the former site’s state will be paper and the latter site’s state will be scissors. Since the

two sites will have applied the same set of updates with different results, the Strong Convergence

Property does not hold.

As noted in Hendrie’s paper[11], the proof of Theorem 2.2 in Cormack’s paper[3] relies on

the following observation: if U1 and U2 are update sequences with U1 ≡ U2, then for any update

sequence U3, U1ˆU3 ≡ U2ˆU3. However, this property does not follow from the definition of ,̂ and

in particular it does not hold for Hendrie’s counterexample.

The Hendrie counterexample is, of course, somewhat contrived. However, it does suggest

that some extra hypotheses are needed before the modified CCU algorithm will work. We will

investigate the nature of these hypotheses in Chapter 3.

Note also that the Hendrie counterexample is only a refutation of the modified CCU algorithm.

In the original CCU algorithm, all sites recompute the canonical update sequence every time a

remote update arrives. Therefore, every site processes updates in canonical order and it is easy

to see that Strong Convergence follows.

2.3 The adOPTed Algorithm

The adOPTed algorithm [18] is very similar in spirit to the modified CCU algorithm. Its major

features are its transformation function, tf , and its preconditions, known as TP1, the Symmetry

Property, and TP2.

2.3.1 The Transformation Function, tf

Let U denote the set of all possible updates. The transformation function, denoted tf , is a partial

function from U × U into U × U , defined for all (u1, u2) ∈ U × U such that T (u1) = T (u2),

but S(u1) 6= S(u2). For such a pair (u1, u2), if tf(u1, u2) = (u′

1, u
′

2), then S(u′

1) = S(u1),

S(u′

2) = S(u2), T (u′

1) = T ′(u2), and T (u′

2) = T ′(u1). Hence, T ′(u′

1) = T ′(u′

2). The exact

formulation of O(u′

1) and O(u′

2) is left to the application designer, and reflects the designer’s

desired semantics for transformations.
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The transformation function is used as follows: let u1 and u2 be updates with T (u1) = T (u2)

(hence u1||u2). Suppose that S(u1) = i and S(u2) = j with i 6= j, and tf(u1, u2) = (u′

1, u
′

2). Then

site i executes the sequence u1; u
′

2 and site j executes the sequence u2; u
′

1.

Example As before, let X, the set of all application states, be the set of all strings (over some

alphabet). Let O, the set of all supported operations, be the set {insert(s, p) | s a string, p ∈ Z, p ≥

1} of string insertions. Let u1 = (insert(p1, s1), 1, (0, 0)) and u2 = (insert(p2, s2), 2, (0, 0)). Then

tf(u1, u2) = ((insert(p′1, s
′

1), 1, (0, 1)), (insert(p′2, s
′

2), 2, (1, 0)), where p′i and s′i might be defined as

follows:

s′1 = s1

s′2 = s2

p′1 =

{

p1 if p1 < p2

p1 + |s2| if p1 ≥ p2

p′2 =

{

p1 if p2 ≤ p1

p1 + |s2| if p2 > p1

.

We also define functions that compute the components of tf in isolation:

Definition 2.21 Define partial functions tf1, tf2 : U ×U ⇀ U ×U , as follows: if u1, u2 ∈ U with

tf(u1, u2) = (u′

1, u
′

2), then tf1(u1, u2) = u′

1 and tf2(u1, u2) = u′

2. If tf(u1, u2) is undefined, then

so are tf1(u1, u2) and tf2(u1, u2).

2.3.2 TP1, The Symmetry Property, and TP2

In order to ensure that the system remains consistent under application of tf , the adOPTed

algorithm assumes that tf satisfies the following three conditions:

Definition 2.22 (TP1) tf is said to satisfy TP1 if for all updates u1 and u2 for which tf(u1, u2)

is defined, if tf(u1, u2) = (u′

1, u
′

2), then (u1; u
′

2)(x) = (u2; u
′

1)(x) for all x ∈ X.

Definition 2.23 (Symmetry Property) tf is said to satisfy the Symmetry Property if for all

updates u1 and u2 for which tf(u1, u2) is defined, if tf(u1, u2) = (u′

1, u
′

2), then tf(u2, u1) =

(u′

2, u
′

1). (Note that if tf(u1, u2) is defined, then it follows immediately from the definition of

tf that tf(u2, u1) is defined.)
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Definition 2.24 (TP2) tf is said to satisfy TP2 if for all updates u1, u2, and u3 that are pairwise

in the domain of tf , if tf(u2, u3) = (u′

2, u
′

3), then tf1(tf1(u1, u2), u
′

3) = tf1(tf1(u1, u3), u
′

2).

TP1 is essentially an assertion that the Strong Convergence Property must hold for pairs of

updates, much like Definition 2.11. The Symmetry Property simply states that the behaviour of

tf is not dependent upon the order in which it receives its arguments. TP2 is not so intuitive.

We will explore its origin and its implications in detail in Chapter 3.

2.3.3 The Algorithm

The adOPTed algorithm is as follows2:

Main:

X ← X0 ; initial state

L ← ∅

Q ← ∅

t ← (0, . . . , 0) ; initial timestamp

s ← local site ID

while not aborted

if there is an input o

u ← (o, s, t)

Q ← Q + u

L ← L + u

broadcast u to other sites

else

if there is an update u from network

Q ← Q + u

L ← L + u

Execute Update

Execute Update:

if ∃u ∈ Q with T (u) ≤ t then

2The adOPTed algorithm actually does some memoization in the the body of Translate Update for increased

efficiency. In the interest of clarity and simplicity, the memoization has been removed.
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choose one such u = (oj , j, tj)

Q ← Q − u

u′′ ← Translate Update(u, t)

apply operation O(u′′) as user S(u)

to state X

increment S(u)-th component of v

Translate Update (u, t):

(oj , j, tj) ← u

if tj = t then return u

else

let i be such that Reachable?(Decr(t, i))

and tj [i] ≤ t[i] − 1

t′ ← Decr(t, i)

ui ← Update(i, t[i])

u′

i ← Translate Update(ui, t
′)

u′ ← Translate Update(u, t′)

(u′′, u′′

i ) ← tf(u′, u′

i)

return u′′

Reachable?(t):

for every i in {1, . . . , n}:

t[i] = 0 or T ′(Update(i, t[i])) ≤ t

Decr(t, i):

copy of t with i-th component decremented

Update(i, j):

j-th update from site i in L

Although the adOPTed algorithm and the modified CCU algorithm are worded differently,

they perform essentially the same sequence of steps. Local updates are applied and broadcast

to other sites. Remote updates are set aside until all of their prerequisites have been applied,

and then transformed against the execution history and applied. The difference between the two
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algorithms lies in the way that transformations are computed. In Chapter 3, we will show that

these two approaches to computing transformations are actually equivalent.

2.4 Other Transformation-Based Systems

In this section we describe some other transformation-based groupware systems. Although we

will not be considering these systems in our analysis, integrating them with the theory we develop

may provide interesting opportunities for further investigation.

2.4.1 Jupiter

Jupiter[15] is a transformation-based, distributed collaboration system from Xerox PARC. It sup-

ports several different types of shared objects, including text documents and a shared whiteboard.

The major features of Jupiter are as follows:

• users can share and unshare their documents dynamically;

• users can enter and leave the system at will;

• users can introduce new shared objects to the system.

The principal difference between Jupiter’s transformation algorithm and the CCU and adOPTed

algorithms is that Jupiter relies on a central server to act as an arbiter when updates conflict. The

central server decides which transformations to perform, and since all documents are physically

stored on the server, clients get a consistent view of the shared state. CCU and adOPTed do

not rely on the existence of any distinguished site; each site is responsible for computing its own

state.

2.4.2 REDUCE

The REDUCE system[20] is a descendant of the GROVE[6] system of Ellis and Gibbs. A major

feature of REDUCE is that it contains a mechanism to detect when portions of a site’s execution

history are no longer needed and discard them. REDUCE also plays particular attention to

the intended effect of a particular update. While adOPTed only strives to ensure that all sites

eventually converge to a common state, REDUCE requires that the common final state be, in

some sense, what the collaborators “intended” it to be (note that the CCU algorithm also makes



CHAPTER 2. RELATED WORK 21

such considerations, although we do not discuss them here). These considerations of intention

constrain the ways in which we may transform updates to transformations that “make sense.”

The transformation algorithm of REDUCE differs from adOPTed and CCU in that when an

update arrives out of order, updates in the history log that should succeed the incoming update

are undone. Then the incoming update is transformed (if necessary) and applied. Finally the

undone updates are transformed (if necessary) and reapplied. The adOPTed and modified CCU

algorithms do not undo previous work. The original CCU algorithm does recompute and reapply

update sequences, but it does not explicitly undo any update.

2.4.3 GOT

The GOT[19] algorithm is similar in appearance to the CCU algorithm. Like the / and \ operators

of CCU, GOT introduces two dual transformation operators, IT and ET . However, whereas /

and \ both augment the definition context of an update with respect to particular ordering

assumptions, IT and ET augment and reduce the definition context, respectively. In particular,

IT transforms an update to account for additional updates that have been applied at a site,

while ET transforms an update to account for updates that were expected, but have not yet been

applied. In a sense, IT and ET are inverse operators.

GOT is unable to resolve all conflicts among updates using IT and ET alone. Thus, on

occasion, GOT, like REDUCE, must resort to undoing and redoing previously applied updates.

2.4.4 GOTO

The GOTO algorithm[21] of Sun and Ellis is a descendant of GOT and adOPTed. Sun and Ellis

claim that by assuming Ressel’s TP2 as an additional precondition, GOT can be transformed

into a strictly forward-moving algorithm (i.e. no undoing of previously applied updates). As a

result, among the alternative transformation-based systems presented here, GOTO is the most

similar to CCU and adOPTed. Although an attempt to unify the theory underlying GOTO with

the theory behind CCU and adOPTed would be a particularly interesting topic for investigation,

we will not make any such attempt here.



Chapter 3

Theory of Operation Transforms

In this chapter, we establish some theoretical results about operation transforms. In particular,

we will show equivalence between the CCU and adOPTed algorithms, and explore the nature of

TP2.

3.1 Interaction Models

The concept of an interaction model was first defined by Ressel[18] and provides a convenient

setting in which to reason about operation transforms. Our definition of an interaction model

will be as follows:

Definition 3.1 Let W be a set of updates in a groupware system consisting of n sites, and x0

an initial state. An interaction model for W is a directed, edge-labelled, vertex-labelled graph

G = (E, V ) in n-dimensional space. Vertices represent timestamps and are labelled with sets of

application states. Edges are labelled with sets of updates (either original or transformed). Given

a vertex v, L(v) denotes the associated label. Similarly, L(e) denotes the label of an edge e.

The edges and vertices, together with their labels, that comprise the interaction model are given

by the following rules:

v0 = (0, . . . , 0) ∈ V, L(v0) = {X0}; (3.1)

if u ∈ W, T (u) ∈ V, and X ∈ L(T (u)), then T ′(u) ∈ V and (T (u), T ′(u)) ∈ E, with (3.2)

22
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u ∈ L(T (u), T ′(u));

if v ∈ V, X ∈ L(v), (v, w) ∈ E, and u ∈ L(v, w), then O(u)(X) ∈ L(w); (3.3)

if (v, w1), (v, w2) ∈ E, u1 ∈ L(v, w1), and u2 ∈ L(v, w2), then (w1, w), (w2, w) ∈ E, (3.4)

with tf2(u1, u2) ∈ L(w1, w) and tf1(u1, u2) ∈ L(w2, w), where w = sup (w1, w2).

Note that there is a one-to-one correspondence between paths in the interaction model from initial

state to current state and total orderings of the updates in W consistent with the causal order

⊆.

Definition 3.2 Let W be a set of updates and G = (V, E) an interaction model. G faithfully

represents W if for all u ∈ W , (T (u), T ′(u)) ∈ E.

Definition 3.3 Let W be a set of updates. W is said to satisfy the Precedence Property if for all

u ∈ W , and for all timestamps T with T < T (u), there exists an update u′ ∈ W with T (u′) = T .

Proposition 3.1 Let M be a set of updates and G an interaction model for M . If M satisfies

the Precedence Property, then G faithfully represents M .

Example Assume there are two sites in the system, and let W = {u1 = (a, 1, (0, 0)), u2 =

(b, 2, (0, 0)), u3 = (c, 1, (1, 0)), u4 = (d, 2, (1, 1))}. We can represent each update u ∈ W as a unit

vector in the plane from T (u) to T ′(u). Then W can be represented graphically as follows:

b

a

d

c
Site 1

Site 2
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The interaction model G for W is the following graph in the plane:

b

a

d

Site 1

Site 2

c

Notice that W satisfies the Precedence Property and that G faithfully represents W , since there

is an edge in G for each update in W .

Proposition 3.2 Let G be an interaction model containing an edge e. Let u, v ∈ L(e). Then

T (u) = T (v) and S(u) = S(v) (hence also T ′(u) = T ′(v)).

Proof The proof is by induction on the structure of G, and is straightforward.

Because of Proposition 3.2 we may associate timestamps and sites with edges: T (e) is T (u) for

u ∈ L(e), and similarly S(e) is S(u) for u ∈ L(e) (by a simple inductive argument, we can show

that no edge has an empty label).

Interaction models are always connected digraphs with a single source at timestamp (0, . . . , 0)

and a single sink at the largest timestamp (in the sense of ⊆) in the model. They provide a

powerful tool for reasoning about the behaviour of the adOPTed algorithm (and, as we shall see,

the CCU algorithm as well). We now explore how the Strong Convergence Property may be

phrased in terms of interaction models.

Definition 3.4 Let W be a set of updates and G = (V, E) an interaction model for W . G is said

to be edge-convergent if for every edge e ∈ E, |L(e)| = 1.
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Definition 3.5 Let W be a set of updates and G = (V, E) an interaction model for W . G is said

to be vertex-convergent if for every vertex v ∈ V , |L(v)| = 1.

Recall that the Strong Convergence Property requires that, given an initial state, the local

state at any site be completely determined by the set of updates that have been applied at that

site. By the Precedence Property, a site’s current notion of the system’s timestamp uniquely

determines the set of updates that have been applied and vice versa. Furthermore, for a given

vertex (timestamp) in the interaction model, its label represents the set of possible states a

site with that timestamp may have. Since the Strong Convergence Property requires that the

timestamp uniquely determine the local state, we see that the Strong Convergence Property is

equivalent to vertex-convergence of the interaction model.

3.2 Equivalence of CCU and adOPTed

In this section, we prove equivalence between the transformations performed by the CCU algo-

rithm and those performed by the adOPTed algorithm. We begin by showing the relationship

between ˆ and tf , and then show that the behaviour of the CCU algorithm can be predicted by

interaction models.

3.2.1 ˆ and tf

There are technical difficulties involved in attempting to prove a relationship between ˆ and tf .

The major issue is that the definitions of ˆ and tf are not self-contained; they are dependent upon

transformation rules imposed externally by the application designer. Therefore, in order to prove

anything, we need to assume that ˆ and tf have been defined based on transformations with the

same semantics. We can formalize this idea as follows:

Definition 3.6 Let t1 and t2 be binary transformation operators on pairs of updates (where

ti(a, b) is read “a transformed by ti with respect to b”). t1 and t2 are said to be defined based

on the same semantics if, for all updates a and b with a||b, we have a; t1(b, a) ≡ a; t2(b, a) and

b; t1(a, b) ≡ b; t2(a, b).

Intuitively, two transformation operators are based on the same semantics if, given the same

execution history and the same incoming update, the two operators transform the incoming
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update in the same way. This is the notion of “based on the same semantics” that we shall use

in the discussion that follows.

Let u1 = (o1, s1, t) and u2 = (o2, s2, t) be updates. By TP1,

u1; tf2(u1, u2) ≡ u2; tf1(u1, u2).

By contrast, definition 2.11 gives us

o2/o1(o1(x)) = o1\o2(o2(x)) for all x ∈ X, if T ′(u1) < T ′(u2) ;

o2\o1(o1(x)) = o1/o2(o2(x)) for all x ∈ X, if T ′(u1) > T ′(u2) ,

and so

u1; (o2/o1, s2, T
′(u1)) ≡ u2; (o1\o2, s1, T

′(u2)) if T ′(u1) < T ′(u2);

u1; (o2\o1, s2, T
′(u1)) ≡ u2; (o1/o2, s1, T

′(u2)) if T ′(u1) > T ′(u2).

If tf and ˆ are to have the same semantics, then we need

tf1(u1, u2) =

{

(o1\o2, s1, T
′(u2)) if T ′(u1) < T ′(u2)

(o1/o2, s1, T
′(u2)) if T ′(u1) > T ′(u2)

tf2(u1, u2) =

{

(o2/o1, s2, T
′(u1)) if T ′(u1) < T ′(u2)

(o2\o1, s2, T
′(u1)) if T ′(u1) > T ′(u2)

,

i.e.

tf(u1, u2) =

{

((o1\o2, s1, T
′(u2)), (o2/o1, s2, T

′(u1))) if T ′(u1) < T ′(u2)

((o1/o2, s1, T
′(u2)), (o2\o1, s2, T

′(u1))) if T ′(u1) < T ′(u2)
.

According to Definition 2.12,

u1ˆu2 =

{

(o1/o2, s1, T
′(u2)) if T ′(u1) > T ′(u2)

(o1\o2, s1, T
′(u2)) if T ′(u1) < T ′(u2)

.

By comparison, we conclude that

tf(u1, u2) = (u1ˆu2, u2ˆu1),

and we have proved the following result:
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w1

w2

u1

u2

u1^u2

u2^u1 w

v

Figure 3.1: Modified interaction model

Theorem 3.1 Let u1 and u2 be updates. Assume that ˆ and tf are defined based on the same

transformation semantics. Then tf(u1, u2) = (u1ˆu2, u2ˆu1). Equivalently, u1ˆu2 = tf1(u1, u2).

With an equivalence between ˆ and tf1 established, we can reformulate (3.4) as follows:

if (v, w1), (v, w2) ∈ E, u1 ∈ L(v, w1), and u2 ∈ L(v, w2), then (w1, w), (w2, w) ∈ E, (3.5)

with u2ˆu1 ∈ L(w1, w) and u1ˆu2 ∈ L(w2, w), where w = sup (w1, w2).

The reformulated rule is illustrated in Figure 3.1.

We now consider the extended definition of ˆ for sequences. We show that its behaviour can

be predicted by an interaction model.

Definition 3.7 Let U = u1; . . . ; un be an update sequence corresponding to a path e1, . . . , en

(each ei is an edge (vi, wi)) in an interaction model G, and t ∈ Z
n a vector. The translation of

U by t is the sequence e′1, . . . , e
′

n in G, where the edge e′i is the edge (vi + t, wi + t).

Lemma 3.1 Let u be an update and U a connected update sequence with origin equal to T (u).

Let t1 and t2 represent the origin and terminus of U , respectively. Then, viewing u as a singleton

update sequence, we have uˆU is the vector in the interaction model obtained by translating u by

t2 − t1.

Proof The proof is by induction on the length of U . If U has length 0, then U = λ and

t2 − t1 = 0. Then we have uˆU = u by definition, which is the result of translating u by 0 in the
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interaction model. If U has length 1, then U is a singleton update u1, and the result follows from

Proposition 2.2. If U has length n > 1, then we can decompose U as U1; U2 where U1 and U2

have length less than n. By Definition 2.12, u (̂U1; U2) = (uˆU1)̂ U2. Let t3 denote the terminus

of U1. Since U is connected, t3 is also the origin of U2. By induction, uˆU1 is the vector in the

interaction model obtained by translating u by t3− t1. Also by induction, (uˆU1)̂ U2 is the vector

in the interaction model obtained by translating uˆU1 by t2 − t3. But this is just u translated by

(t3 − t1) + (t2 − t3) = t2 − t1. Thus, uˆU is the vector obtained by translating u by t2 − t1 and

the result now follows by induction.

Theorem 3.2 Let U1 and U2 be connected update sequences with T (U1) = T (U2). Let t1 = T (U1)

and t2 = T ′(U1). Then U2ˆU1 is the path in the interaction model obtained by translating U2 by

t2 − t1.

Proof The proof is by induction on the total length of U1 and U2, which we call n. For n = 0

or n = 1, the result is trivial, as at least one of U1 and U2 must be empty. For n = 2, if neither

of U1 and U2 is empty, then U1 and U2 are both singleton updates and the result follows from

Proposition 2.2. Assume n > 2. If U2 is empty, then the the result is trivial, as U2ˆU1 = λ. If

U2 has length 1, then the result follows by Lemma 3.1. So assume that U2 has length greater

than 1. Then we can decompose U2 as U3; U4, where U3 and U4 each have length at least 1.

By Definition 2.12, (U3; U4)̂ U1 = (U3ˆU1); (U4 (̂U1ˆU3)). Now, U3 and U1 have total length less

than n, and so by induction, U3ˆU1 is the path obtained by translating U3 by the vector t2 − t1.

Let t′1(= t1) and t′2 denote the origin and terminus of U3, respectively. By induction, U1ˆU3 is

the path obtained by translating U1 by the vector t′2 − t′1. Since U2 is connected, U4 has origin

t′2. Hence, U4 and U1ˆU3 have the same origin. Since U1ˆU3 is just a translation of U1, U1ˆU3

is a connected sequence with the same length as U1. Thus, U4 and U1ˆU3 have total length less

than n, and so by induction, U4 (̂U1ˆU3) is a translation of U4 by t2 − t1. Hence, (U3; U4)̂ U1 is a

translation of U3 by t2 − t1 followed by a translation of U4 by t2 − t1, but this is nothing but a

translation of U2 by t2 − t1. The result now follows by induction.

3.2.2 |/[] and Interaction Models

We now consider how the behaviour of the operators | and [] can be expressed via interaction

models. We first need to distinguish between two types of updates:
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Definition 3.8 Let u be an update in an interaction model G. u is called an original update

if u was issued by a site (that is, if u is in G because of (3.2)). Otherwise, u was generated

by a transformation of some other update (that is, u is in G because of (3.5)), and u is called

transformed.

Definition 3.9 Let u be an update in an interaction model G. We denote by or(u) the original

update that was transformed (perhaps via several applications of (3.5)) to produce u. If u is an

original update, then we define or(u) = u. Otherwise, u = vˆw for some updates v and w, and

or(u) = or(v).

Proposition 3.3 Let u and v be updates. Let w = uˆv. Then T (w)[S(u)] = T (u)[S(u)] and

T ′(w)[S(u)] = T ′(u)[S(u)] (recall that S(w) = S(u)).

Proof Obvious.

Proposition 3.4 Let u and v be updates. Then T (u) ⊂ T (uˆv).

Proof Obvious.

Proposition 3.5 Let u be an update in an interaction model G. u is an original update if and

only if for every update v in G with T (v)[S(u)] = T (u)[S(u)] and T ′(v)[S(u)] = T ′(u)[S(u)], we

have T (u) ⊆ T (v).

Proof Suppose u is an original update and let v 6= u be such that T (v)[S(u)] = T (u)[S(u)] and

T ′(v)[S(u)] = T ′(u)[S(u)]. Note that S(v) must equal S(u). If v is an original update, then v

is the T (u)[S(u)]-th update from site S(u). But this is impossible, since u is the T (u)[S(u)]-th

update from site S(u). So v = v1 v̂2 for some updates v1 and v2. Then by Proposition 3.3,

T (v1)[S(u)] = T (u)[S(u)] and T ′(v1)[S(u)] = T ′(u)[S(u)] and by Proposition 3.4, T (v1) ⊂ T (v).

The same argument applies to v1 as to v. As timestamps are bounded below, this sequence

of arguments must terminate with an update v0 that is not the result of an application of ,̂

i.e., v0 is an original update. By previous arguments, T (v0)[S(u)] = T (u)[S(u)], T ′(v0)[S(u)] =

T ′(u)[S(u)], and T (v0) ⊂ T (v). Then v0 is the T (u)[S(u)]-th update from site S(u), i.e., v0 = u.

Thus, T (u) ⊆ T (v). Conversely, suppose that u is an update in G such that for every update v

in G with T (v)[S(u)] = T (u)[S(u)] and T ′(v)[S(u)] = T ′(u)[S(u)], we have T (u) ⊆ T (v). If u is a

transformed update, then u = u1ˆu2 for some updates u1 and u2. Then T (u1)[S(u)] = T (u)[S(u)],

T ′(u1)[S(u)] = T ′(u)[S(u)] (Proposition 3.3), and T (u1) ⊂ T (u) (Proposition 3.4). But this is a

contradiction, and so u cannot be transformed. Hence u is original, and the result follows.
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Proposition 3.6 Let u be an update in an interaction model G. Then or(u) is the update v in

G with T (v)[S(u)] = T (u)[S(u)], T ′(v)[S(u)] = T ′(u)[S(u)], and T (v) minimal (in the sense of

⊆).

Proof By Proposition 3.3 and straightforward induction, we get T (or(u))[S(u)] = T (u)[S(u)]

and T ′(or(u))[S(u)] = T ′(u)[S(u)]. Minimality comes from Proposition 3.5 and the fact that

or(u) must be original. Uniqueness comes from the fact that the label set of any edge introduced

in (3.2) is a singleton set.

Propositions 3.5 and 3.6 show that the concepts of original and transformed updates, and the

operator or are well-defined. We may now use them freely in the demonstrations that follow.

Definition 3.10 Let v1 and v2 be vertices in an interaction model G with v1 ⊆ v2. The canonical

path from v1 to v2 is the path from v1 to v2 in G that corresponds to the canonical ordering of

the updates in DC(v2) \ DC(v1).

Recall that there is a one-to-one correspondence between paths in the interaction model and total

orders consistent with the partial order. Hence, canonical paths are well-defined.

The choice of which path is canonical is dependent upon our choice of total ordering of events.

For the total order we chose in Definition 2.8, the canonical path is determined as follows: at

each vertex along the way, if there is more than one possible next step, then the step along the

axis corresponding to the largest site id is chosen. A canonical path is illustrated in Figure 3.2.

We shall also need the following lemma:

Lemma 3.2 Let W1 and W2 be sets of updates such that W2 satisfies the Precedence Property

and W1 ⊆ W2. Then W1|W2 = λ.

Proof The proof is by induction on n = |W2|. If n = 0, then W1 = W2 = λ and W1|W2 = λ by

definition. For n > 0, let u be the update in W2 for which T ′(u) is maximal. Since W1 ⊆ W2,

we have u ∈ W2. Hence, by Definition 2.20, W1|W2 = (W<u
1

|W<u
2

)̂ (u (̂W<u
2

|W⊂u)). Since

T ′(u) is maximal, we have W<u
1

= W1 \ {u} and W<u
2

= W2 \ {u}. Hence, W<u
1

⊆ W<u
2

and

|W<u
2

| = n − 1. So by induction, W<u
1

|W<u
2

= λ. Hence, W1|W2 = λ (̂u (̂W<u
2

|W⊂u)) = λ, and

the result now follows by induction.

With these definitions and results in hand, we now have the following relationship between |

and interaction models:
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A

B

Site 1

Site 2

Figure 3.2: A Canonical Path. The solid arrows indicate the canonical path from A to B.

Theorem 3.3 Let W1 and W2 be sets of updates such that both W2 and W1 ∪ W2 satisfy the

Precedence Property. Let W2 have interaction model G1 with sink vertex v1. Let W1 ∪ W2 have

interaction model G2 with sink vertex v2. Then W1|W2 is the canonical path in G2 from v1 to v2.

Proof Let W = W1 ∪ W2. The proof is by induction on n = |W |. We have n ≥ |W2|. For

n = |W2|, we have W1 ⊆ W2, and so by Lemma 3.2, W1|W2 = λ. Since W2 = W1 ∪ W2,

the corresponding interaction models for these two sets have the same sink vertex, and so the

canonical path between the two sinks is λ and the result follows. Assume n > |W2|. Let u ∈ W

with T ′(u) maximal. There are two cases to consider:

Case 1: u 6∈ W2. Then W1|W2 = (W<u
1

|W2); (u (̂W<u|W⊂u)). Since T ′(u) is maximal, u 6∈

W<u
1

∪ W2, and so |W<u
1

∪ W2| < n. Also, W2 and W<u
1

∪ W2 satisfy the Precedence Property.

Therefore, by induction, W<u
1

|W2 is the canonical path from v1 to v′2, where v′2 is the sink vertex of

the interaction model G′

2 corresponding to W<u
1

|W2. Also, W⊂u ⊆ W<u ⊂ W , and both W<u and

W⊂u satisfy the Precedence Property. Therefore, by induction, W<u|W⊂u is an update sequence

U whose corresponding path in the interaction model is the canonical path from the sink of W⊂u

to the sink of W<u. Since W⊂u is the set of causal prerequisites of u, we have DC(u) = W⊂u,

and so T (u) = T (U). By Theorem 3.2, T (u (̂W<u|W⊂u)) = T ′(U), and T ′(U) is the sink of W<u.

Further, W<u = W<u
1

∪ W2 (since u 6∈ W2). Hence, W1|W2 = (W<u
1

|W2); (u (̂W<u|W⊂u)) is a

connected sequence, hence a connected path, and it remains to show that this path is canonical.
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By induction, we have that W<u
1

|W2 is canonical in the interaction model for W<u. If W<u
1

|W2

is still canonical in the interaction model for W , then it follows immediately that W1|W2 is

canonical. So suppose that W<u
1

|W2 is not canonical in the interaction model for W . Then there

exists an edge (v, w1) in W<u
1

|W2 that would not be chosen in a canonical path from v1 to v2.

Instead, an edge (v, w2) would have been chosen. Since W<u
1

|W2 is canonical in W<u, (v, w2)

is not in the interaction model for W<u. Let u′ ∈ L(v, w2). If or(u′) is not u, then (v, w2)

would have been in the interaction model for W<u. Therefore, or(u′) = u, and so S(u′) = S(u).

Furthermore, by Proposition 3.3, w2 = T ′(u)[S(u)]. At the point where an update in L(v, w2)

has been applied, the timestamp of the system is w2. Note that w2 6⊆ w1 and w1 6⊆ w2. Hence,

by (3.5), sup (w1, w2) is a vertex in G2, and w2 ⊂ sup (w1, w2). Hence, an update whose original

update was u was not applied last, and this contradicts the definition of |. Thus, there is no such

edge (v, w2), and so W<u
1

|W2 is canonical in W . The result now follows by induction.

Case 2: u ∈ W2. Then W1|W2 = (W<u
1

|W<u
2

)̂ (u (̂W<u
2

|W⊂u)). Since T (u) is maximal, u 6∈

W<u
1

∪ W<u
2

, and so |W<u
1

∪ W<u
2

| < n. Also, W<u
1

and W<u
2

satisfy the Precedence Property.

Therefore, by induction, W<u
1

|W<u
2

is the canonical path from the sink of W<u
2

to the sink

of W<u
1

. Also, W<u
2

∪ W⊂u ⊂ W , and both W<u
2

and W⊂u satisfy the Precedence Property.

Therefore, by induction, W<u
2

|W⊂u is a sequence U whose corresponding path in the interaction

model is the canonical path from the sink of W⊂u to the sink of W<u
2

. Since W⊂u is the set

of causal prerequisites of u, we have DC(u) = W⊂u, and so T (u) = T (U). By Theorem 3.2,

T (u (̂W<u
2

|W⊂u)) = T ′(U), and T ′(U) is the sink of W<u
2

. Hence, by Theorem 3.2, W1|W2

is a translation of the sequence (W<u
1

|W<u
2

) by the vector T ′(uˆU) − T (uˆU). By induction,

(W<u
1

|W<u
2

) is a canonical path in W<u, and W1|W2 is just a translation of this sequence, and

hence is still canonical in W . The result now follows by induction.

Corollary 1 Let W be a set of updates that satisfies the Precedence Property. Let W have

interaction model G with sink vertex v. Then [W ] is the canonical path from the origin of G to

v.

Proof Follows immediately from the definition of [W ] as W |{}. Note that {} has both source

and sink equal to (0, . . . , 0).

From Theorem 3.3, the following result is clear:

Theorem 3.4 Let Wi be the set of updates stored at site i at some instant during the execution of

the CCU algorithm on n sites. Let u1; . . . ; un = [Wi]. Let G be the interaction model for Wi with
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sink vertex v. Then in the canonical path e1, . . . , en from (0, . . . , 0) to v in G, we have uj ∈ L(ej)

for 1 ≤ j ≤ n. That is, the sequence of updates performed by the CCU algorithm is among the

possible update sequences that can be obtained by tracing the canonical path from (0, . . . , 0) to v

in G.

Notice that Theorem 3.4 does not claim that [Wi] is the only update sequence obtainable by

tracing the canonical path from (0, . . . , 0) to v in G. This issue is much easier to address once

we have considered the role of edge-convergence in correctness of groupware systems. We will

discuss edge-convergence in detail in the next section and will therefore defer the remainder of

the equivalence argument until then.

3.3 Edge-Convergence, TP2, and Correctness

We have already dicussed the Precedence Property, TP1, and the Symmetry Property in detail.

Indeed, nearly all of the theory we have developed is built upon the assumption that these

properties hold. Our goal in this section is to establish a proof of correctness of the adOPTed

algorithm. As we work towards a proof of correctness, we will see that Ressel’s final hypothesis,

TP2, also plays a key role in the argument.

3.3.1 Edge-Convergence and TP2

As we established in Section 3.1, correctness of the adOPTed algorithm is equivalent to vertex-

convergence of the interaction model. However, TP2 comes from considerations related to edge-

convergence, which we discuss first.

Recall that an interaction model is called edge-convergent if the label of every edge in the

model is a singleton set. In a two-site system, we get edge-convergence for free:

Theorem 3.5 Let M be a set of updates in a two-site system such that M satisfies the Precedence

Property. Let G be an interaction model for M . Then G is edge-convergent.

Proof We prove the following result by induction: Let e = (v, w) be an edge in G. Then

|L(e)| = 1. Our proof will be by induction on n = |v|. If n = 0, then v = (0, . . . , 0), the initial

timestamp, and so e must be in the interaction model by (3.2). Hence any update u ∈ L(e) must

be original. Since there can be only one original update u with T (u) = v and T ′(u) = w, u must

be the only update in L(e), and so |L(e)| = 1. Assume n > 0. If e is in the interaction model by
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(3.2), then L(e) contains only original updates, and as we have seen, this gives |L(e)| = 1 imme-

diately. So assume that e is in the interaction model by (3.5). Then by (3.5), for any u ∈ L(e)

there exist edges e1 = (v′, v) and e2 = (v′, w′) in G such that there exist updates u1 ∈ L(e1) and

u2 ∈ L(e2) such that u = u2ˆu1. Notice that e1 and e do not originate at the same site; otherwise

w′ = v, which gives e1 = e2 and then (3.5) does not apply (recall that ˆ is not defined over updates

that occur at the same site). So e1 and e2 originate at different sites. Suppose that for u′ ∈ L(e),

u′ 6= u, there also sites e3 = (v′′, v) and e4 = (v′′, w′′) in G with u′ = u4ˆu3 for some u3 ∈ L(e3)

and u4 ∈ L(e4). By the same argument as above, e3 and e originate from different sites. Since

there are only two sites in the system, e3 and e1 must originate at the same site. Hence v′ = v′′.

Similarly, e2 and e4 must originate at the same site, and so w′ = w′′. Thus, e3 = e1 and e4 = e2,

i.e., e1 and e2 are uniquely determined independently of u. Note that |v′| = |v| − 1, and both e1

and e2 originate at v′. Therefore, by induction, |L(e1)| = |L(e2)| = 1, and so L(e1) = {u1} and

L(e2) = {u2} for some updates u1 and u2. Let u ∈ L(e). Since the edges e1 and e2 that generate

e are uniquely determined, and their respective labels are the singleton sets {u1} and {u2}, the

only value of u admitted by (3.5) is u2ˆu1. Hence, L(e) = {u2ˆu1}, and in particular |L(e)| = 1.

Edge-convergence now follows by induction.

When we consider systems with more than two sites, the situation becomes more interest-

ing. Edge-convergence is no longer guaranteed (also recall that Hendrie’s counterexample to the

modified CCU algorithm assumed a system with at least three sites). As an example, consider

a system with three sites. Assume that the system has quiesced at a vertex v = (a, b, c) in the

interaction model. Then at timestamp v, site 1 issues update u1, site 2 issues update u2, and site

3 issues update u3, with u1, u2, and u3 pairwise concurrent. This situation is illustrated in Figure

3.3. By (3.2), the interaction model contains the edges e1 = (v, (a+1, b, c)), e2 = (v, (a, b+1, c)),

and e3 = (v, (a, b, c + 1)) with labels {u1}, {u2}, and {u3}, respectively. By three applications of

(3.5), the interaction model also contains the edges e12, e21, e13, e31, e23, and e32, with labels as

illustrated in Figure 3.4. Now consider the edge e0 = ((a+1, b, c+1), (a+1, b+1, c+1)) (Figure

3.5). By (3.5) applied to edges e21 and e31, e0 is in the interaction model and L(e0) contains

(u2ˆu1)̂ (u3ˆu1). However, by (3.5) applied to edges e23 and e13, L(e0) contains (u2ˆu3)̂ (u1ˆu3).

Thus, in a three-site system, an edge may be admitted to the interaction model via two different

applications of (3.5), and each of these leads to a (potentially) different expression for the element

of the label set. Similar constructions are also possible in larger systems. Hence, edge-convergence

is not guaranteed when there are more than two sites.
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L(e1)={u1}

e2

L(e2)={u2}

e3
L(e3)={u3}

1ev

Figure 3.3: Three concurrent updates.
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L(e2)={u2}
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L(e3)={u3}
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e32

L(e32)={u3^u2}

L(e23)={u2^u3}

L(e21)={u2^u1}

e31 L(e31)={u3^u1}

e13 L(e13)={u1^u3}

L(e12)={u1^u2}e12

v

Figure 3.4: Three concurrent updates—three applications of (3.5).
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L(e1)={u1}

e2

L(e2)={u2}

e3
L(e3)={u3}

1e

e23

e21

e32

L(e32)={u3^u2}

L(e23)={u2^u3}

L(e21)={u2^u1}

e31 L(e31)={u3^u1}

e13 L(e13)={u1^u3}

L(e12)={u1^u2}e12

e0

v

Figure 3.5: Three concurrent updates—four applications of (3.5).
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In order to preserve edge-convergence in the three-site case, we need an additional hypothe-

sis. In the above construction, edge-convergence requires (u2ˆu3)̂ (u1ˆu3) = (u2ˆu1)̂ (u3ˆu1). In

general, for updates a, b, and c, we require (â b)̂ (ĉ b) = (â c)̂ (b̂ c). This condition is precisely

TP2:

TP2: tf1(tf1(a, b), c′) = tf1(tf1(a, c), b′), where tf(b, c) = (b′, c′)

⇔ (tf1(a, b))̂ c′ = (tf1(a, c))̂ b′

⇔ (â b)̂ c′ = (â c)̂ b′, with b′ = b̂ c, c′ = ĉ b

⇔ (â b)̂ (ĉ b) = (â c)̂ (b̂ c)

Thus, TP2 is a statement about edge-convergence in the three-site case. In the sections to come,

we will explore the effect of TP2 in n-site systems, and the overall role of edge-convergence in

correctness.

3.3.2 TP2 in n-Site Systems

Based on the developments in the previous section, it is reasonably clear that TP2 is sufficient to

guarantee edge-convergence in the three-site case. There can be at most three pairwise concurrent

updates at any instant in a three-site system, and TP2 applied to those three updates will avoid

the generation of multiple labels that we observed previously. The more interesting question is

whether TP2, a condition on triples of updates, is sufficient to guarantee edge-convergence in the

n-site case, or whether a stronger condition, or perhaps a family of conditions, is required.

In fact, in the presence of our previous assumptions, TP2 is enough, as we will see in the next

theorem. First we need a few preliminary results:

Lemma 3.3 Let (v1, w) and (v2, w) (with u1 ∈ L(v1, w) and u2 ∈ L(v2, w)) be edges in interac-

tion model G with v1 6= v2. Assume that G is edge-convergent. Then u1 and u2 are not original

updates, i.e. they are both transformed updates.

Proof Let t = (a1, a2, . . . , an). Without loss of generality, assume that u1 operates in the first

coordinate of the interaction model and that u2 operates in the second (that is, u1 and u2 execute

at sites 1 and 2, respectively). Then v1 = (a1 − 1, a2, . . . , an) and v2 = (a1, a2 − 1, . . . , an). If u1

is an original update, then by the timestamp, it is the a1-st original update from site 1. By the

state vectors, u1 executes under the assumption that a2 updates from site 2 have already been

applied. If u2 is also an original update, then we have that u1 executes under the assumption
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that u2 has already executed, i.e. u1 causally precedes u2. Then by symmetry, we also have u2

causally precedes u1, and this is a contradiction. So u2 must be transformed. Let u0 = or(u2).

Then u0 is the a2-nd original update from site 2. Let W represent the set of original updates

against which u0 is transformed to produce u2. Clearly, or(u1) cannot causally precede any one

of these updates, by the existence of the edge (v1, w) (i.e. state w can be reached by applying

u1 last). Hence, we can transform u0 with respect to the set of requests W ′ = W \ {or(u1)}

without violating the causal ordering. Doing so will produce an update vector whose head is v1

and whose tail is (a1 − 1, a2 − 1, a3, . . . , an) = inf (v1, v2). Hence inf (v1, v2) is a vertex in G. Let

v = inf (v1, v2). At v, neither or(u1) nor or(u2) (appropriately transformed) has been applied.

Since these updates are concurrent, we can apply them in any order. In particular, we can apply

or(u1) (appropriately transformed), producing the edge (v, v2). So this edge is in G. Assume

that the label of edge (v, v1) contains the update r and that the label of edge (v, v2) contains the

update s. Then by edge-convergence, we have u1 = ŝ r and u2 = r ŝ. Hence u1 is not an original

request. A similar argument applies to u2, and the result follows.

From the proof of Lemma 3.3, we can immediately establish the following two results:

Lemma 3.4 Let (v1, w) and (v2, w) be edges in interaction model G. Assume that G is edge-

convergent and let v = inf (v1, v2). Then (v, v1) and (v, v2) are edges in G.

Lemma 3.5 Let e1 = (v1, w) and e2 = (v2, w) be edges in G. Assume that G is edge-convergent.

Then there exist updates r and s such that L(e1) = {r ŝ} and L(e2) = {ŝ r}.

Definition 3.11 Let G = (V, E) be an interaction model, n a nonnegative integer. We denote by

G<n the graph G′ = (V ′, E′) with V ′ = {v ∈ V | |v| < n} and E′ = {(v1, v2) ∈ E | v1 ∈ V ′, v2 ∈

V ′}.

We are now ready to prove the main result:

Theorem 3.6 Let G be an interaction model with updates satisfying the Precedence Property,

TP1, the Symmetry Property, and TP2. Then G is edge-convergent.

Proof We prove the following result by induction on n: Let e = (v1, v2) be an edge in G with

|v1| = n. Then |L(e)| = 1.

If |v1| = 0, then v1 = (0, . . . , 0) and so e = (v1, v2) represents an original update, having been

applied to the initial state. Hence L(e) contains only that original update.
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Suppose now that the result holds for all 0 ≤ n < k and consider the case n = k. Let

e = (v1, v2) be an edge in G with |v1| = k and with u ∈ L(E). If e represents an original update,

then L(e) = {u} and we are done. So assume that e is a transformed update. Then G contains

edges f = (u1, v1), g = (u1, u2), with L(f) = {q} and L(g) = {p} (by induction G<k is edge-

convergent, so |L(f)| = |L(g)| = 1) such that u = p̂ q. If only one such pair f and g exists, then

L(e) = {u} and we are done. So assume that there also exist edges f ′ = (u′

1, v1), g′ = (u′

1, u
′

2),

with L(f ′) = {s} and L(g′) = {r} so that r ŝ ∈ L(e) as well. Note that by construction, f ′ and

g′ must be parallel to e in G. This implies that u1 6= u′

1 (otherwise g and g′ would coincide) and

further, f 6= f ′. Hence f and f ′ are perpendicular. Since f = (u1, v1) and f ′ = (u′

1, v1), then by

Lemma 3.5, q and s can be expressed as â b and b̂ a respectively, for some updates a and b. Let

u0 = inf (u1, u
′

1). By Lemma 3.4 and edge-convergence of G<k, edges (u0, u1) and (u0, u
′

1) are

in G and labelled {b} and {a}, respectively. Note that by definition, or(u) = or(p) = or(r) = o

for some original update o. Let W be the set of original updates against which o is transformed

to produce u. Clearly, or(p) and or(r) are both in W , and neither of these updates causally

precedes any other update in W . So we can consider the set of updates W ′ = W \ {or(p), or(r)}

and transform o with respect to W ′. This produces an edge E = (u0, u0 + v2 − v1) in G, labelled,

say, with {c} (by edge-convergence of G<k). Then we have p = ĉ b and r = ĉ a. Thus, L(e)

contains

p̂ q = (ĉ b)̂ (â b)

r ŝ = (ĉ a)̂ (b̂ a)

and these two expressions are equal by TP2. Hence both ways by which we constructed e yield

the same element of L(e), and therefore |L(e)| = 1. The result now follows by induction.

3.3.3 Edge-Convergence and Correctness

From Theorem 3.6, we see that TP2 is sufficient to guarantee edge-convergence in a system of

any size. We now explore the connection between edge-convergence and vertex-convergence. The

main result is as follows:

Theorem 3.7 Let G be an edge-convergent interaction model with updates satisfying the Prece-

dence Property, TP1, and the Symmetry Property. Then G is vertex-convergent.

Proof We prove the following result by induction on n: Let v be a vertex in G with |v| = n.

Then |L(v)| = 1.
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If |v| = 0, then v = (0, . . . , 0) and the result is clear, since L(0, . . . , 0) = {x0}, where x0 is the

initial state.

Suppose now that the result holds for all 0 ≤ n < k and consider the case n = k. Let v be a

vertex in G with |v| = k. Since k > 0, there exists an edge e = (u1, v) leading to v. By the above

argument, |L(e)| = 1. If there is only one such e, then L(v) = {O(u)(X)} where L(e) = {u}

and L(u1) = {X}, and we are done (|L(u1)| = 1 follows from vertex-convergence of G<k). Sup-

pose there are two such edges, e1 = (u1, v) and e2 = (u2, v). Again, by previous arguments,

|L(e1)| = |L(e2)| = 1. Let u = inf (u1, u2). By Lemma 2, the edges (u, u1) and (u, u2) are in

G. By induction, L(u) = {s} for some state s and L(u, u1) = {a} and L(u, u2) = {b} for some

requests a and b. Also by induction, |L(u1)| = |L(u2)| = 1, so by construction, L(u1) = {O(a)(s)}

and L(u2) = {O(b)(s)}, respectively. By edge-convergence, (u1, v) and (u2, v) are labelled {b̂ a}

and {â b}, respectively. So the two possible labellings of v are {O(b̂ a)(a(s))} and {O(â b)(b(s))}.

But by TP1, these expressions must yield the same result. Thus, |L(v)| = 1 and we are done.

The next result now follows immediately:

Theorem 3.8 Let tf be defined so as to satisfy TP1, the Symmetry Property, and TP2. Then

the adOPTed algorithm satisfies the Strong Convergence Property, and is therefore correct.

Proof Edge-convergence follows from TP2, vertex-convergence follows from edge-convergence,

and Strong Convergence follows from vertex-convergence. Since interaction models predict the

behaviour of the adOPTed algorithm (see Ressel[18]), correctness follows.

Edge-convergence also allows us to finish our proof of equivalence between the CCU algorithm

and the adOPTed algorithm:

Theorem 3.9 Let x be an initial state and W a set of updates that satisfies the Precedence

Property. Assume that ˆ and tf are defined with the same transformation semantics, and that

TP1, the Symmetry Property and TP2 hold. Then the CCU algorithm and the adOPTed algorithm

will compute the same final state after transforming and applying all of the updates in W .

Proof By Theorem 3.4, the label set of each edge in the canonical path from initial state to

final state in the interaction model contains an update that the CCU algorithm would apply. By

edge-convergence, all edges are labelled with singleton sets, and so there is only one sequence of

updates obtainable by tracing the canonical path from initial state to final state. If the adOPTed
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algorithm (which is non-deterministic) follows the canonical path, then it must compute exactly

the same sequence of updates as the CCU algorithm. By edge-convergence, we have vertex-

convergence, and so the adOPTed algorithm and the CCU algorithm must compute the same

state at the sink vertex of the interaction model, i.e., the same final state.

We now consider the modified CCU algorithm. As we saw in Chapter 2, Hendrie[11] showed

by example that the modified CCU algorithm is incorrect. However, the updates defined in

Hendrie’s example do not satisfy TP2. We would like to show that if we assume TP2, then the

modified algorithm works. We now supply a proof of Theorem 2.2 with TP2 as an additional

hypothesis:

Theorem 3.10 (Modified CCU Theorem 2) Let W1 and W2 be sets of updates such that W2

and W1∪W2 satisfy the Precedence Property. Assume that ˆ is defined so as to satisfy TP2. Then

[W1 ∪ W2] ≡ [W2]; (W1|W2)

Proof Let G2 be the interaction model for W2 and G1 be the interaction model for W1∪W2. Let

G2 have sink vertex v2, and G1 have sink vertex v1. By Theorem 3.3, [W1 ∪W2] is the canonical

path in G1 from (0, . . . , 0) to v1, [W2] is the canonical path in G2 from (0, . . . , 0) to v1, and

W1|W2 is the canonical path in G1 from v2 to v1. Thus, both [W1 ∪ W2] and [W2]; (W1|W2) are

connected paths in G1 from (0, . . . , 0) to v1. By TP2, we have edge convergence, which implies

vertex convergence. Hence both paths must compute the same state at v1, and the result follows.

Corollary 1 With TP2 as an additional hypothesis, the modified CCU algorithm is correct.

Proof Because the modified CCU algorithm does not process an update until all of the update’s

causal prerequisites are met, the set Wi of updates in consideration at site i is guaranteed to

satisfy the Precedence Property. Hence in any application of | to sets W1 and W2, W2 and

W1 ∪ W2 will satisfy the Precedence Property, and the modified CCU Theorem 2 will apply. By

the other theorems in Cormack[3], correctness follows.

3.3.4 Necessity of TP2

In the last section, we saw that, in the presence of our previous assumptions (the Precedence

Property, TP1, and the Symmetry Property), TP2 is a sufficient condition to guarantee Strong

Convergence. However, TP2 is a very strong condition, and it puts very strict constraints on the
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behaviour of .̂ Indeed, we have not yet demonstrated that any useful set of operations satisfies

TP2. Thus, our goal in this section will be to explore the question of whether TP2 is a necessary

condition.

Our first observation is immediate:

Proposition 3.7 TP2 is not necessary to guarantee correctness in two-site systems.

Proof Two-dimensional interaction models are always edge-convergent (Theorem 3.5), and cor-

rectness follows from edge-convergence.

Indeed, correctness follows without extra hypotheses in the two-site case. However, Hendrie’s

counterexample shows that the general n-site algorithm does require additional preconditions.

The question is whether TP2 is required, or whether we may assume some weaker condition in

its place.

We first note that TP2 is a necessary and sufficient condition for edge-convergence:

Proposition 3.8 Let G be an interaction model for a system with updates satisfying TP1 and

the Symmetry Property. Then updates in G satisfy TP2 if and only if G is edge-convergent.

Proof The forward implication follows from Theorem 3.6. The reverse implication follows from

the construction in Section 3.3.1.

Hence the question of necessity of TP2 reduces to a question of necessity of edge-convergence.

This question remains open. However, we can demonstrate necessity in several restricted cases:

Lemma 3.6 For any groupware system with n > 3 sites whose behaviour is predicted by an

interaction model, and whose updates satisfy TP1 and the Symmetry Property, the following

condition is neccessary for Strong Convergence:

(a; (b̂ a); ((ĉ a)̂ (b̂ a))) ≡ (b; (a b̂); ((ĉ b)̂ (a b̂))) (3.6)

for all updates a, b, and c.

Proof Assume that the system is at timestamp t = (0, . . . , 0) with initial state x ∈ X. Consider

again the construction outlined in Figures 3.3, 3.4, and 3.5. Sites 1, 2, and 3 issue updates u1,

u2, and u3, respectively, with u1, u2, and u3 pairwise concurrent. We can reach the sink vertex
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of the interaction model via several paths, two of which are (e1; e21; e0), and (e2; e12; e0). The

first path computes the state (u1; u2ˆu1; (u3ˆu1)̂ (u2ˆu1))(x). The second path computes the state

(u2; u1ˆu2; (u3ˆu2)̂ (u1ˆu2))(x). Since we require vertex convergence, these two states must be

identical:

(u1; u2ˆu1; (u3ˆu1)̂ (u2ˆu1))(x) = (u2; u1ˆu2; (u3ˆu2)̂ (u1ˆu2))(x) for all x ∈ X

(u1; u2ˆu1; (u3ˆu1)̂ (u2ˆu1)) ≡ (u2; u1ˆu2; (u3ˆu2)̂ (u1ˆu2))

for all updates u1, u2, and u3. The result follows with u1 = a, u2 = b, and u3 = c.

Notice that (3.6) follows from TP2, and is therefore a potentially weaker precondition. How-

ever, under certain circumstances, TP2 follows from (3.6):

Theorem 3.11 Suppose that the set O of supported operations has the property that every oper-

ation o ∈ O is surjective. Then TP2 is necessary for Strong Convergence.

Proof Let a, b, and c be updates with O(a), O(b), and O(c) in O. By Lemma 3.6, we have

(a; b̂ a; (ĉ a)̂ (b̂ a)) ≡ (b; â b; (ĉ b)̂ (â b))

Let x ∈ X. By surjectivity, there is some y ∈ X such that (a; b̂ a)(y) = (b; â b)(y) = x. We then

have

(a; b̂ a; (ĉ a)̂ (b̂ a))(y) = (b; â b; (ĉ b)̂ (â b))(y)

(O((ĉ a)̂ (b̂ a)))((a; b̂ a)(y)) = (O((ĉ b)̂ (â b)))((b; â b)(y))

(O((ĉ a)̂ (b̂ a)))(x) = (O((ĉ b)̂ (â b)))(x).

Thus (O((ĉ a)̂ (b̂ a)))(x) = (O((ĉ b)̂ (â b)))(x) for all x ∈ X. Since we are modeling operations

as functions on the state space X, we thus have O((ĉ a)̂ (b̂ a)) = O((ĉ b)̂ (â b)). Since we also

have S((ĉ a)̂ (b̂ a)) = S((ĉ b)̂ (â b)) and T ((ĉ a)̂ (b̂ a)) = T ((ĉ b)̂ (â b)), we have (ĉ a)̂ (b̂ a) =

(ĉ b)̂ (â b), and we see that TP2 is necessary for Strong Convergence.

Theorem 3.12 Suppose that the set O of supported operations has the property that for all

f, g ∈ O, and for all x ∈ X, f(g(x)) = f(x) (i.e. operations in O mask each other). Then TP2

is necessary for Strong Convergence.
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Proof Let a, b, and c be updates with O(a), O(b), and O(c) in O. By Lemma 3.6, we have

(a; b̂ a; (ĉ a)̂ (b̂ a)) ≡ (b; â b; (ĉ b)̂ (â b))

Let x ∈ X. Then we have

(a; b̂ a; (ĉ a)̂ (b̂ a))(x) = (b; â b; (ĉ b)̂ (â b))(x)

(b̂ a; (ĉ a)̂ (b̂ a))(O(a)(x)) = (â b; (ĉ b)̂ (â b))(O(b)(x))

(b̂ a; (ĉ a)̂ (b̂ a))(x) = (â b; (ĉ b)̂ (â b))(x)

O((ĉ a)̂ (b̂ a))(O(b̂ a)(x)) = O((ĉ b)̂ (â b))(O(b̂ a)(x))

O((ĉ a)̂ (b̂ a))(x) = O((ĉ b)̂ (â b))(x).

Thus (O((ĉ a)̂ (b̂ a)))(x) = (O((ĉ b)̂ (â b)))(x) for all x ∈ X. Hence, as in the proof of Theorem

3.11, TP2 is necessary for Strong Convergence.

Notice that the operators Rock, Paper, and Scissors from Hendrie’s example satisfy the hy-

potheses of Theorem 3.12. Hence any transformation scheme we define on these operators must

satisfy TP2; otherwise Strong Convergence will fail.

Text buffer insertions and deletions are neither masking operations nor surjective. However,

in some sense, they are “almost” surjective. For example, although not every text buffer can be

obtained by applying insert(3, “a”) to some state x, every text buffer with “a” at position 3 can.

Thus, we would expect TP2 to be necessary for insertions and deletions, although we cannot

conclude necessity from Theorem 3.11.

The following result gives another condition that necessitates TP2:

Theorem 3.13 Suppose the set O of supported operations has the property that for all f, g ∈ O

and for all x ∈ X, if f 6= g then f(x) 6= g(x). Then TP2 is necessary for Strong Convergence.

Proof Suppose that TP2 is not necessary for Strong Convergence. Then there exists an inter-

action model G which is vertex-convergent, but not edge-convergent. Let e = (v1, v2) be an edge

in G with |L(e)| > 1. Then there exist updates u1, u2 ∈ L(e) with O(u1) = f for some f ∈ O,

O(u2) = g for some g ∈ O, and f 6= g. Since G is vertex-convergent, L(v1) = {x0} for some state

x0 ∈ X. By (3.3), L(v2) contains f(x0) and g(x0). But by vertex-convegence, |L(v2)| = 1, and

so f(x0) = g(x0). Hence, if for all f, g ∈ O, x ∈ X we have f(x) 6= g(x), TP2 must be necessary



CHAPTER 3. THEORY OF OPERATION TRANSFORMS 45

for Strong Convergence, and the result follows.

Now consider the set of text buffer insertions and deletions from the point of view of Theorem

3.13. Let x be a text buffer and f and g be text buffer operations with f 6= g. Then it is easy to

check via case analysis that f(x) 6= g(x), and so we have the following corollary:

Corollary 1 TP2 is necessary when O is the set of text buffer insertions and deletions.

The question of whether TP2 is truly necessary in all cases is still open. However, we have

demonstrated that in several important cases, it is indeed necessary. Therefore, we make the

following conjecture:

Conjecture 3.1 TP2 is a necessary condition for Strong Convergence.

3.3.5 Verifying TP2

In the previous section, we saw that TP2 is a necessary condition for Strong Convergence in

many cases, and we conjectured that it is always necessary. Thus, as designers of groupware

systems, we would like to be able to verify whether our formulations of ˆ or tf really do satisfy

TP2. Verifying TP2 turns out to be a very time-consuming problem; since it is a condition on

triples of updates, the verification process tends to involve cubic effort. In this section, we explore

a few opportunities to reduce the effort somewhat, but the general problem remains difficult.

Our first observation is based on Ressel’s NOOP Property[18]:

Definition 3.12 Let X be a set of states. Denote by NOOP the operation f ∈ XX such that

f(x) = x for all x ∈ X. Also denote by NOOP any update u for which O(u) = NOOP (when

there is no possibility of ambiguity).

Definition 3.13 A groupware system is said to satisfy the NOOP Property if for all operations

f ∈ O, NOOPˆf = NOOP and fˆNOOP = f .

Proposition 3.9 If a groupware system has NOOP ∈ O and satisifies the NOOP Property, then

for all updates a, b, c, if one of a, b, and c is NOOP, then TP2 holds for all permutations of a,

b, and c.
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Proof We will verify the following formulation of TP2:

(â b)̂ (ĉ b) = (â c)̂ (b̂ c).

The other permutations can be obtained by renaming a, b, and c. If a = NOOP, then

(â b)̂ (ĉ b) = (NOOP b̂)̂ (ĉ b)

= NOOP (̂ĉ b)

= NOOP

and

(â c)̂ (b̂ c) = (NOOP ĉ)̂ (b̂ c)

= NOOP (̂b̂ c)

= NOOP.

If b = NOOP, then

(â b)̂ (ĉ b) = (â NOOP)̂ (ĉ NOOP)

= â c

and

(â c)̂ (b̂ c) = (â c)̂ (NOOP ĉ)

= (â c)̂ NOOP

= â c.

The case that c = NOOP is identical to the case that b = NOOP.

Thus, when verifying TP2, as long as our groupware system satisfies the NOOP Property, we do

not need to consider the case that one of the updates is NOOP.

One might wonder about the value of Proposition 3.9, as it is difficult to imagine that an appli-

cation designer would create a system that supported an operation that does nothing. However,

NOOP can find its way into a groupware system in a very natural manner: the transformation

operators / and \ are defined as binary operators on the set O of supported operations. There-

fore, by definition of an operator, O must be closed under / and \. It is often the case that the
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result of applying / or \ to two operations will result in NOOP. For example, one might define

insert(3, “a”)/delete(2, 4) to be NOOP, as the region into which the “a” was to be inserted was

deleted. Thus, the requirement that O be closed under / and \ can very naturally introduce

NOOP into the system.

Our next observation is based on the idea of commuting updates:

Definition 3.14 Operations f and g are said to commute with each other if for all states x ∈ X,

f(g(x)) = g(f(x)). Updates u and v are said to commute with each other if T (u) = T (v),

S(u) 6= S(v), and O(u) and O(v) commute with each other.

Definition 3.15 A groupware system is said to have the Commuting Property if for all updates

u and v, if u and v commute with each other, then uˆv = u and vˆu = v.

Proposition 3.10 Let a, b, and c be updates that commute pairwise in a groupware system that

has the Commuting Property. Then TP2 holds for any permutation of a, b, and c.

Proof We will check the following formulation of TP2:

(â b)̂ (ĉ b) = (â c)̂ (b̂ c).

Other permutations can be obtained by renaming a, b, and c. We have

(â b)̂ (ĉ b) = â c

= a

and

(â c)̂ (b̂ c) = â b

= a.

The result now follows.

Proposition 3.11 Let a be an update that commutes with all other updates in a groupware system

that has the Commuting Property. Then for all updates b and c such that a, b, and c are pairwise

concurrent, TP2 holds for any permutation of a, b, and c.
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Proof Since

(â b)̂ (ĉ b) = â (ĉ b)

= a

and

(â c)̂ (b̂ c) = â (b̂ c)

= a,

we have (â b)̂ (ĉ b) = (â c)̂ (b̂ c). Also, since

(b̂ a)̂ (ĉ a) = b̂ c

and

(b̂ c)̂ (â c) = (b̂ c)̂ a

= b̂ c,

we have (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c). The verification that (ĉ b)̂ (â b) = (ĉ a)̂ (b̂ a) is identical.

Thus, by Proposition 3.10, we can ignore any triple of updates that commute pairwise, and

by Proposition 3.11, we can ignore any operation that commutes with all others. Indeed, the

proof of Proposition 3.11 shows that a need not commute with all other updates; it is sufficient

for a to commute with the -̂closure of {b, c}.

Our final observation is based on the idea that some updates may be expressible in terms of

others:

Theorem 3.14 Let O and O′ be sets of operations with transformations defined so that operations

in O′ satisfy TP1 and TP2. Suppose that every operation in O can be expressed as a combination

of operations in O′ such that the transformation rules in O agree with those in O′. Then Strong

Convergence is guaranteed in O. Further, if TP2 is known to be necessary, then TP2 is guaranteed

in O.

Proof Let u be an update with O(u) ∈ O. Then there exist operations o1, . . . , om ∈ O′ such

that O(u) = om ◦ · · · ◦ o1. Let S1 be a groupware system based on O and S2 be a groupware
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system based on O′. The update u1 issued by site i at time t corresponds to an edge e in the

interaction model G1 for S1. If, in S2, at time t, site i issues a sequence of updates (u1; . . . ; um)

with O(uj) = oj for 1 ≤ j ≤ n, then the interaction model G2 for S2 contains a sequence of edges

that, laid end-to-end, create a single large vector that correspond to the edge e in G1. Thus, we

can superimpose G2 onto G1 and we discover that G1 is, in fact, a subgraph of G2
1. Since TP1

and TP2 hold in S2, G2 is vertex-convergent, and since G1 is a subgraph of G2, G1 is vertex-

convergent as well. If TP2 is necessary for Strong Convergence in S1, then edge-convergence

follows from vertex-convergence, and TP2 follows from edge-convergence. The result follows.

Theorem 3.14 makes it possible to verify TP2 on a set of operations by breaking them down

as compositions on a smaller set of operations and verifying TP2 on the smaller set. We can

also take an existing set of operations on which TP2 is known to hold and build more complex

operations from them without having to verify TP2. For example, if a set of transformation

rules on text buffer insertions and deletions is known to satisfy TP2, then we can implement a

“move” operation as a deletion followed by an insertion without having to check TP2 on the new

operation.

In this chapter, we showed equivalence between the CCU and adOPTed algorithms. We

showed that, in the presence of TP2, the Strong Convergence Property holds, and the modified

CCU algorithm is correct. We have seen that TP2 is often a necessary condition for correctness,

and although the general question of necessity remains open, we expect that it is indeed a nec-

essary condition. Finally, we illustrated a few techniques to aid in the process of verifying TP2.

In the next chapter, we will see how to construct a general toolkit for constructing distributed

objects based on the modified CCU algorithm.

1Strictly, speaking, G1 is not a subgraph of G2 because when exterior vertices are removed from G2 to produce

G1, the exterior edges they connect are coalesced rather than deleted. Interior edges and vertices, however, are

deleted. We use the term “subgraph” for lack of a better one.



Chapter 4

A Library for Operation Transforms

in ML

In this chapter, we discuss the implementation of a framework for constructing distributed objects

based on the modified CCU algorithm. We begin with a summary of the implementation language,

Concurrent ML, and then describe the details of the implementation.

4.1 Summary of Concurrent ML

Concurrent ML (CML) was designed by John Reppy[17] in 1990. It is an extension of SML[14,

22] that allows for concurrent programming and is included in the more recent distributions of

Standard ML of New Jersey (SML/NJ).

CML was written entirely in ML, without any modifications to the compiler. Because SML/NJ

is internally represented using continuation passing style[1] and provides first-class continuations,

a thread can be represented simply as a continuation, and can thus be created very cheaply. Pre-

emption is accomplished via SML/NJ’s signal-handling mechanism. Threads are automatically

garbage-collected when they finish their computation.

50
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4.1.1 Thread Management

Threads are created in CML via the spawn function in the CML structure. There are two variants

of spawn1:

type thread_id

val spawn : (unit -> unit) -> thread_id

val spawnc : (’a -> unit) -> ’a -> thread_id

spawn takes a function f, of type unit -> unit, and creates a new thread to execute f. The

new thread’s ID is returned to the caller. spawnc is similar, except that it allows the caller to

pass a parameter to the function f. Notice that, in both cases, the function f returns unit. This

restriction is forced upon the design of CML by the fact that continuations do not return values.

Thus, since the return value of the function will be ignored anyway, it is assumed to be unit. As

a result, if a thread needs to communicate a computed value to its parent, it needs to use some

mechanism other than the return value of the function. We will discuss communication among

threads in the next section.

A thread can give up control of the CPU using the yield function, and can terminate itself

via the exit function:

val yield : unit -> unit

val exit : unit -> ’a

The return type of exit is ’a because exit never returns.

4.1.2 Communication Among Threads

Although it is possible for CML threads to communicate via shared memory (a mutable value

may reside in the environment of multiple threads), this approach to communication is decidedly

non-functional and the CML design discourages its use (for example, CML contains no built-in

support for mutex locks).

1In the syntax of ML type expressions, -> is the type constructor for functions and * is the type constructor for

tuples. The type unit is the degenerate type with a single element, denoted (). The type exn is the type shared

by all exceptions. Quoted identifiers, such as ’a or ’b, represent type variables, and act as placeholders for any

valid type.
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Instead, CML threads communicate via message-passing. Messages are passed over channels,

which are created via the channel function in the CML structure:

type ’a chan

val channel : unit -> ’a chan

A value of type ’a chan is a channel capable of carrying messages of type ’a. A channel is

essentially a queue of values. Channels are not associated with a particular sender or receiver;

arbitrary threads may send and/or receive on a particular channel. Also note that the type

’a chan is parametrically polymorphic, and that channels are first-class values. In other words,

given any type, we can create a channel capable of carrying values of that type. Thus channels

can carry functions, or even other channels. Furthermore, we may parameterize functions over

channels or store channels in data structures. This degree of flexibility provides considerable

freedom in designing communication schemes.

Communication over channels is done using the functions send and recv:

val send : (’a chan * ’a) -> unit

val recv : ’a chan -> ’a

send and recv are blocking operations. In particular, send blocks until a receiver picks up the

message that was sent, and recv blocks until a message is available for receipt. Note that it is a

trivial matter to implement a non-blocking send operation; we simply spawn a thread that calls

the provided send function and then terminates. However, CML provides a separate mechanism,

mailboxes, for asynchronous communication:

type ’a mbox

val mailbox : unit -> ’a mbox

val send : (’a mbox * ’a) -> unit

val recv : ’a mbox -> ’a

Mailboxes are used in the same way as channels, except that send for mailboxes is non-blocking.

When there is no clear reason to prefer synchronous or asynchronous communication, Reppy ad-

vocates synchronous communication, as reasoning about synchronous communication is generally

easier[17].
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4.1.3 Synchronization and First-Class Events

A hallmark feature of CML is its treatment of synchronization. CML distinguishes the act of

synchronization from the event upon which synchronization occurs. The event is abstracted into

a concrete value and given first-class status in the language. As a result, events may be stored

in data structures, or threads may exchange events with each other over channels. Thus, it is

possible for a thread to synchronize on another thread’s events.

Events are created by calling one of several functions in the CML structure:

type ’a event

val joinEvt : thread_id -> unit event

val sendEvt : (’a chan * ’a) -> unit event

val recvEvt : ’a chan -> ’a event

val timeOutEvt : Time.time -> unit event

val atTimeEvt : Time.time -> unit event

A value of type ’a event is an event that produces a value of type ’a upon synchronization. The

function joinEvt takes the ID of a particular thread and produces an event that synchronizes

on the termination of that thread. sendEvt and recvEvt return events that synchronize on the

completion of a send or recv operation. timeOutEvt produces an event that synchronizes after

the specified amount of time has passed. atTimeEvt produces an event that synchronizes after a

specified clock time is reached.

Note that none of the above-mentioned functions block; they do not perform synchronizations,

but instead return the objects upon which synchronizations may be performed. Synchronization

is performed via another function, sync:

val sync : ’a event -> ’a

Invoking sync on an event causes the calling thread to block until the event’s synchronization

condition is met. sync then returns the value of type ’a carried by the event. For example,

joining on a particular thread is performed as follows:

val _ = sync (joinEvt TID)

where TID is the ID of the thread upon which we wish to join.
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Often, a thread may need to synchronize on one of several events. For example, a server

may need to poll several channels and choose one on which a message is waiting (or block, if all

channels are empty). CML provides two operations, select and choose, for this purpose:

val select : ’a event list -> ’a

val choose : ’a event list -> ’a event

choose takes a list of events and non-deterministically returns a ready event from the list. If

none of the events are ready, choose blocks until one or more of the events become ready, and

then returns one of these. select chooses a ready event from an event list and synchronizes on

it; it is semantically equivalent to sync o choose, but has a more efficient implementation.

CML also supports event combinators, operations that act on events and produce new events:

val wrap : (’a event * (’a -> ’b)) -> ’b event

val wrapHandler : (’a event * (exn -> ’a event)) -> ’a event

val alwaysEvt : ’a -> ’a event

wrap attaches a post-synchronization action to an event. When the event is synchronized, the

post-synchronization function is invoked and the result returned to the caller. wrapHandler is sim-

ilar, except that it wraps a post-synchronization exception handler around an event. alwaysEvt

returns an event that is always ready. Given a value x, alwaysEvt x returns an event that is

always ready, and returns x upon synchronization. alwaysEvt is useful for specifying default ac-

tions in event lists; if, during a select or choose, no other events in the event list are ready, an

event that is always ready can be used to trigger some alternative action (although it is possible

for the always-ready event to be selected even when other events are ready).

4.1.4 Multicast

A message sent over a channel or mailbox is picked up by a single recipient. Often, we would like

to send a message to several recipients, and the exact set of recipients may not be computable at

design time. In such situations, we can use multicast channels, which are defined in the Multicast
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structure:

type ’a mchan

type ’a port

val mChannel : unit -> ’a mchan

val port : ’a mchan -> ’a port

val recv : ’a port -> ’a

val recvEvt : ’a port -> ’a event

val multicast : (’a mchan * ’a) -> unit

A value of type ’a mchan is a multicast channel capable of carrying messages of type ’a. Multicast

channels are created with mChannel. Messages are sent over multicast channels using the function

multicast. Note that, by necessity, multicast is non-blocking, as the set of recipients is not of

fixed size, and may even be empty.

A thread that needs to retrieve values from a multicast channel creates a port on that channel.

A port on a ’a mchan is a value of type ’a port. A port is created via a call to port. Each

port on a particular multicast channel receives all of the messages sent on that channel since the

port’s creation. A port does not receive messages that were sent before it was created; otherwise,

the garbage collector could never collect old messages. A thread receives messages from a port

via the recv function. recv is blocking; recvEvt returns the corresponding event.

4.1.5 A Sample CML Program

CML objects cannot be manipulated at the top level; all CML code must reside inside of struc-

tures. CML programs are launched by invoking RunCML.doit with the name of a “main” function

that runs the application.

An example “hello world” program is illustrated below:

structure Hello = struct

val ch: string CML.chan = CML.channel()

fun receiver () =

let

val s = CML.recv ch
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in

TextIO.print s

end

fun sender () =

let

val _ = CML.spawn receiver

in

CML.send(ch, "Hello world!\n")

end

fun main’ () =

let

val tid = CML.spawn sender

in

CML.sync (CML.joinEvt tid)

end

fun main () = ignore (RunCML.doit(main’, SOME(Time.fromMilliseconds 5)))

end

The program is launched by calling Hello.main(). main calls the auxiliary function main’, which

spawns a thread to execute the function sender. sender spawns a thread to execute the function

receiver. sender then sends receiver the string “Hello world!\n” over a channel and receiver

prints the string. main’ joins on sender and then finishes. The optional second argument to

RunCML.doit specifies the time-slicing quantum.

4.2 Implementation of CCU in CML

In this section, we outline the construction of a generic CCU module in CML. We begin with a

description of the overall system architecture and then describe the CCU module itself.
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Figure 4.1: System architecture

4.2.1 System Architecture

The overall architecture of our system is based on the GROVE system of Ellis[7], and is illustrated

in Figure 4.1. Each of the large boxes represents a site. Sites are connected to one another via

some communications network. The logic at each site is broken into two components: the shared

object and the driver. The shared object maintains the local copy of the shared state and performs

all of the communication with other sites necessary to implement the CCU algorithm. The driver

is the application making use of the shared object. It encapulates the user interface and any

application logic, and is responsible for issuing updates to the shared object.

The shared object provides a set of interface functions to the driver that allow the driver to

issue updates and query the shared state. While the shared object will have the same imple-

mentation from site to site, sites may use different drivers. Thus, for example, two sites may be

sharing a text buffer, but using different text editor “front ends” to issue updates to the buffer.

Our system is a prototype system running on a simulated network. A separate module

provides the network abstraction; a real network may be substituted by supplying an alternate

implementation of this abstraction. Providing the actual communications layer and handling the

associated deployment issues are problems left to future investigation.

Our implementation will provide a facility for generating implementations of the shared object

component for each site. The implementation of drivers is left to the application designer, but
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we will provide a sample driver for a shared text buffer in Chapter 5.

4.2.2 The Network Module

The dOPT, CCU and adOPTed algorithms all assume an underlying communications framework

in which all messages are eventually delivered, although not necessarily in order, and with the

potential for arbitrarily long delays. A broadcast network is modeled nicely by a multicast chan-

nel, with facilities for random delay and reordering of messages. Thus our network signature is

simply the multicast signature:

signature NETWORK = MULTICAST

The Network structure provides most of the functionality of the original Multicast structure,

with two main modifications. First, the function multicast now spawns a thread that delays a

random amount of time before sending its message on the multicast channel. Second, the func-

tion port now installs a server and a mailbox on any port that it creates. The server picks up

messages from the port, and then spawns a thread for each message that delays a random amount

of time and sends the message to the mailbox. recv now receives its messages from the mailbox

instead of directly from the port. These two modifications introduce delays into the system, and

break the FIFO ordering of events that would come from simply using a multicast channel to

model the network.

4.2.3 The Timestamp Module

The Timestamp structure implements the vector timestamps that are used by both the CCU and

adOPTed algorithms to detect conflicting updates. Its signature is as follows:

signature TIMESTAMP = sig

exception Incompatible

exception Range

eqtype timestamp

val mktimestamp : int -> timestamp

val size : timestamp -> int
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val inc : (timestamp * int) -> timestamp

val causalLT : (timestamp * timestamp) -> bool

val totalLT : (timestamp * timestamp) -> bool

val sup : (timestamp * timestamp) -> timestamp

val inf : (timestamp * timestamp) -> timestamp

val toString : timestamp -> string

end

The Timestamp structure exports a type timestamp and a set of interface functions for manip-

ulating timestamps. mktimestamp creates the timestamp (0, . . . , 0) of a specified length. size

returns the number of components of a particular timestamp. inc increments a specified com-

ponent of the given timestamp. causalLT and totalLT compare two timestamps according to

the causal order ⊆ and the total order ≤, respectively. sup and inf compute the supremum and

infimum, respectively, of a pair of timestamps. toString returns a printable representation of

a particular timestamp. causalLT, totalLT, sup, and inf raise the exception Incompatible if

invoked on timestamps of different sizes. inc raises the exception Range if an invalid component

is specified.

4.2.4 The CCU Module

The CCU module implements the modified CCU algorithm. We wish to allow the application

designer to specify the nature of the shared state and the operations on that state. We will then

take these specifications and construct the shared objects. SML has a natural mechanism for

creating abstractions in this way: functors. Thus, our CCU module will be a functor.

The input to the functor must contain a specification of the shared state, the set of supported

operations on the state, and the rules for transforming operations against one another. Here our

model from previous chapters breaks down. We have been modelling operations as functions on

the state space X, and thus the operators / and \ are actually functions operating on functions.

However, equality of functions is undecideable in general, and so any attempt to define / and \

as operators on functions will fail.

Instead, we take a more abstract approach to modelling states and operations. We will

represent both of these entities as types, and then / and \ can be modelled as functions on the

operation type. In addition, we need to supply an additional function, apply, that provides

the semantics of the supported operations. This approach reduces the problem of determining
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equality of functions to testing equality of values of the operation type (of course, it is possible

for two different values of the operation type to have the same semantics; / and \ need to be

aware of such “equivalence classes”).

The input signature, CCUOBJ, is as follows:

signature CCUOBJ = sig

type state

val stateToString : state -> string

eqtype operation

val operationToString : operation -> string

val apply : (operation * state) -> state

val / : (operation * operation) -> operation

val \ : (operation * operation) -> operation

end

The functions stateToString and operationToString return printable representations of states

and operations.

The output from the functor is a structure that provides interface functions for drivers. A

driver needs to be able to issue updates to the shared state and to query the shared state for

presentation to the end user. In addition, the structure must provide interface functions for

creating and initializing instances of the shared object. These requirements comprise the output

signature, CCUAPI, which is as follows:

signature CCUAPI = sig

type state

eqtype operation

type siteid

structure T : TIMESTAMP

(* For communication with the driver. *)

datatype message = MSG of operation * T.timestamp

| QUIT of T.timestamp
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(* For communication with peers. *)

datatype netmessage = NMSG of operation * siteid * T.timestamp

| NQUIT of siteid * T.timestamp

type ccuobject

type commtoken

(* Blocking *)

val update : (commtoken * message) -> T.timestamp

val query : commtoken -> (state * T.timestamp)

exception Done

(* Non-blocking -- use with caution. *)

val send : (commtoken * message) -> unit

structure M : MULTICAST

val create : (state * netmessage M.mchan * netmessage M.port

* int * siteid) -> ccuobject

val start : ccuobject -> commtoken

val numSites : ccuobject -> int

end

The types state and operation are the same as those in the input signature, CCUOBJ, but are

repeated here because they are used to specify the types of some of the elements of CCUAPI. The

type siteid is an abstraction of the type used to specify and distinguish sites (currently, siteid

is simply a synonym for int). The datatype message is the type used by drivers to send messages

to the shared objects. A message can either be an update (characterized by an operation and

a timestamp; the site ID is already known by the shared object) or a directive to quit. The

datatype netmessage is the type used by shared objects to communicate with each other. Again,

a message can either be an update or a quit directive.

The type ccuobject is the return type of the create function and the input type of the start

function. It is simply a placeholder for an initialized object between a call to create and a call

to start. Drivers do not use the type ccuobject directly; instead, they use the type commtoken
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which encapsulates the communications pipeline between the driver and its shared object, much

like a file descriptor.

Communication between a driver and its instance of the shared object occurs via the two

interface functions update and query. update issues an update to the shared object and returns

a timestamp, indicating the instance’s knowledge of the state of the system. query queries the

shared object for its current state. query returns the current state and the current timestamp.

update and query are blocking operations. A non-blocking send for commtokens is also provided

for convenience, but one must be careful that the sender does not flood the commtoken with

messages.

Instances of the shared object are created by calling create. create takes as input an

initial state, a simulated network channel (see Section 4.2.2), a port on that channel, the number

of sites in the system, and a site ID, and produces as output a ccuobject encapsulating this

information. This object will write to the provided channel and read from the provided port

when communicating with its peers.

An instance of the shared object is activated by calling start. start takes as input a

ccuobject and creates a commtoken for use by the driver. It then spawns a thread that polls the

driver and the network for incoming updates and applies them to the shared state (after suitable

transformation). start then returns the commtoken.

4.2.5 Initialization

Initialization of shared objects and drivers is a somewhat involved process. To create a system

consisting of n sites, we proceed in several steps. First, we create a multicast channel for delivering

messages among peers. Second, we create n ports on the multicast channel. Next, we create n

ccuobjects, each initialized with a different port. Next, we create n drivers, each initialized to

communicate with a different instance of the shared object. Finally, we start each of the drivers.

The order in which we perform these tasks is important. For example, we must not start any

driver before we have created all of the ports; otherwise, the driver may start to send messages

and the ports that do not exist yet would miss them. The entire process of initialization is

sufficiently tedious and error-prone that we would like to automate it somewhat.

To facilitate the initialization process, we introduce another functor, InitFn. InitFn takes

as parameters the shared object structure (i.e. the output of the CCU functor) and the driver

structure and produces the necessary initialization code. The output of InitFn is a structure
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whose signature consists of a single function:

val init : (int * Obj.state) -> unit

init takes as parameters the number of sites and the initial state (the structure Obj represents

the output of the CCU functor), and returns no result. When invoked, init initializes the drivers

and shared object, and runs the system.

Drivers passed as arguments to InitFn must conform to the following signature:

signature DRIVER = sig

type driver

type commtoken

type init

val initialize : unit -> unit

val initData : unit -> init

val mkdriver : (unit -> commtoken) -> Timestamp.timestamp ->

init -> driver

val main : driver -> unit

end

The type driver is the return type of mkdriver and the input type of main. It is primarily

an encapsulation of the data passed to mkdriver. The type commtoken is the same as the type

commtoken from the output of the CCU functor, and is included simply for the purpose of expressing

types.

The type init allows for possible initialization of drivers. For example, it could contain

configuration information, such as user interface settings. The details are up to the application

designer. The function initialize performs any required initialization on data in the structure,

and is called my InitFn before it creates any drivers. The function initData generates the

initialization data for the drivers. The k-th invocation of initData produces the initialization

data for the k-th driver.

The function mkdriver creates a driver. It takes as parameters a function that starts the

driver’s instance of the shared object (and produces its commtoken), an initial timestamp, and

its configuration values (contained in the type init). mkdriver returns a value of type driver.

The function main takes a driver and starts it.

One disadvantage of using the InitFn functor is that, because the type driver appears as

part of the DRIVER signature, we fall short of our design goal of being able to have a different
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Figure 4.2: Shared object architecture

driver at each site. The best we can do is make the type driver a disjoint union type and allow

mkdriver to choose one of the alternative implementations. We cannot, for example, create two

driver structures and have some instances of the shared object associated with one driver and the

rest with the other. If we need this level of flexibility, then we must write the initialization code

by hand.

4.2.6 Shared Object Architecture

The structure of a shared object is illustrated in Figure 4.2. A shared object communicates with

the broadcast network via a multicast channel and a port on that channel. The object writes

to the channel and reads from the port. Communication with the driver occurs via a set of

channels encapsulated by a commtoken. The shared object also maintains a log of previously-

applied updates and a queue of pending updates. The log maintains the history of appied updates

against which new updates are transformed. The queue holds updates that have not yet been

applied because their causal prerequisites have not yet arrived.

The shared object runs in a polling loop. On each iteration, the shared object accepts an

update from either the driver or the network, or removes an update from the front of the queue.

The update is then processed if its causal prerequisites have been met; otherwise it is placed at

the end of the queue. Once an update has been processed (i.e. transformed and applied), it is

added to the log.

Notice that this design actually deviates somewhat from the actual CCU algorithm; in the

CCU algorithm, local updates are applied immediatetely, but in our design, a shared object
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may service an update from the network before a local update (the CML select and choose

operators have no notion of priority). However, it is quite easy to show that even under these

relaxed conditions, we still get Strong Convergence in the presence of TP2.

4.2.7 Constructing Transformation-Based Systems Using the CCU Library

With the CCU library in place, constructing transformation-based groupware systems is a five

step process:

1. Specify the operations, state, and transformations by creating a structure conforming to

the CCUOBJ signature.

2. Invoke the CCU functor on this structure to produce a structure with signature CCUAPI.

3. Write a driver structure conforming to the DRIVER signature.

4. Invoke the InitFn functor on the output of the CCU functor and the driver structure.

5. Write a mainline structure to invoke RunCML.doit with a function that invokes init with

the desired number of sites.

In Chapter 5, we will illustrate the use of the CCU library by implementing a shared text buffer.



Chapter 5

Applications

In this chapter, we will demonstrate how to use the framework developed in Chapter 4 to build

transformation-based shared objects. In Section 1, we will present the transformation rules for a

shared text buffer that supports insertions and deletions, and we will build a shared text buffer

using our CCU library. In Section 2, we will consider other examples of transformation-based

systems.

5.1 A Shared Text Buffer

Our running example of a shared object throughout this thesis has been that of a shared text

buffer supporting insertions and deletions. In this section, we complete our treatement of this

example by giving the full set of transformation rules and providing an implementation of a shared

text buffer using our CCU library.

5.1.1 Transformation Rules

Recall from Chapter 1 that the shared text buffer supports the following operations:

insert(p, s)—inserts the string s into the buffer at position p, p ≥ 1;

delete(p, l)—deletes l consecutive characters from the buffer starting at position p, p ≥ 1.

66
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insert(p1, s1)/insert(p2, s2) =

{

insert(p1, s1) (p1 < p2)

insert(p1 + |s2|, s1) (p2 ≤ p1)

insert(p1, s1)\insert(p2, s2) =

{

insert(p1, s1) (p1 ≤ p2)

insert(p1 + |s2|, s1) (p2 < p1)

delete(p1, l1)/delete(p2, l2) =











































delete(p1, l1) (p1 + l1 ≤ p2)

delete(p1, p2 − p1) (p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2)

delete(p1, l1 − l2) (p1 ≤ p2 ≤ p2 + l2 ≤ p1 + l1)

delete(p1, 0) (p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2)

delete(p2, p1 + l1 − p2 − l2) (p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1)

delete(p1 − l2, l1) (p2 + l2 ≤ p1)

delete(p1, l1)\delete(p2, l2) = delete(p1, l1)/delete(p2, l2)

delete(p1, l1)/insert(p2, s2) =











delete(p1, l1) (p1 + l1 ≤ p2)

delete(p1, l1 + |s2|) (p1 ≤ p2 < p1 + l1)

delete(p1 + |s2|, l1) (p2 < p1)

delete(p1, l1)\insert(p2, s2) = delete(p1, l1)/insert(p2, s2)

insert(p1, s1)/delete(p2, l2) =











insert(p1, s1) (p1 < p2)

insert(p1, “”) (p2 ≤ p1 < p2 + l2)

insert(p1 − l2, s1) (p2 + l2 ≤ p1)

insert(p1, s1)\delete(p2, l2) = insert(p1, s1)/delete(p2, l2)

Figure 5.1: Operation Transforms for Text Buffer Operations

The transformation rules for these operations are given in Figure 5.11. The behaviour of / and

\ over insertions is as discussed in Chapter 2. For a deletion d1 transformed against another

deletion d2, there are three major cases. If d1 occurs strictly to the left of d2, it is left unchanged.

If d1 occurs strictly to the right of d2, then it is translated to the left by the number of characters

deleted by d2. Otherwise the two deletions overlap, and d1 is transformed so as to delete only

those characters not already deleted by d2.

For a deletion d transformed over an insertion i, if d occurs to the left of i, then d is unchanged.

1The transformation rules for the text buffer operations are given in Cormack[3]. We have modified these rules

slightly in the interest of compliance with TP2.
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If d occurs to the right of i, then d is shifted to the right by the number of characters inserted by

i. If the insertion point of i lies within the region to be deleted by d, then the region is expanded

to include the inserted characters.

For an insertion i transformed over a deletion d, if i occurs to the left of d, then i is unchanged.

If i occurs to the right of d, then the point of insertion of i is shifted to the left by the number of

characters deleted by d. If the point of insertion of i occurs within the region deleted by d, then

no characters are inserted.

5.1.2 Validating the Text Buffer Transforms

Notice that both insert(p, “”) and delete(p, 0) are synonyms for NOOP and are therefore the same

operation. Thus, we need to be sure that they have the same transformation semantics. First

consider insert(p, “”) transformed against insertions. The result is either insert(p, “”) or insert(p+

k, “”) for some k. Either way, the result is NOOP. For an insertion insert(p, s) transformed against

insert(p2, “”), the result is either insert(p, s) or insert(p + |“”|, s) = insert(p, s). For insert(p, “”)

transformed against a deletion, the resulting insertion always inserts the string “”, and thus the

result is NOOP. For a deletion transformed against insert(p, “”), the result is either the original

deletion, or the original deletion with one of the parameters augmented by |“”|, which is equal to

0. Hence, the deletion is unchanged.

Next consider delete(p, 0) transformed over an insertion. From Figure 5.1, the relevant rule is

delete(p1, l1)/insert(p2, s2) =











delete(p1, l1) (p1 + l1 ≤ p2)

delete(p1, l1 + |s2|) (p1 ≤ p2 < p1 + l1)

delete(p1 + |s2|, l1) (p2 < p1)

Since l1 = 0, we see that the condition p1 ≤ p2 < p1+ l1 cannot hold, and so the resulting deletion

always deletes l1 (i.e., 0) characters. Thus, the result is NOOP. For an insertion transformed

against delete(p, 0), the relevant rule from Figure 5.1 is

insert(p1, s1)/delete(p2, l2) =











insert(p1, s1) (p1 < p2)

insert(p1, “”) (p2 ≤ p1 < p2 + l2)

insert(p1 − l2, s1) (p2 + l2 ≤ p1)

Since l2 = 0, the condition p2 ≤ p1 < p2+l2 cannot hold. Hence the resulting insertion is identical

to the original. For delete(p, 0) transformed against a deletion, the relevant rule from Figure 5.1
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is

delete(p1, l1)/delete(p2, l2) =











































delete(p1, l1) (p1 + l1 ≤ p2)

delete(p1, p2 − p1) (p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2)

delete(p1, l1 − l2) (p1 ≤ p2 ≤ p2 + l2 ≤ p1 + l1)

delete(p1, 0) (p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2)

delete(p2, p1 + l1 − p2 − l2) (p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1)

delete(p1 − l2, l1) (p2 + l2 ≤ p1)

Under the assumption that l1 = 0, the condition p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2 reduces to p1 = p2,

p1 ≤ p2 ≤ p2 + l2 ≤ p1 + l1 reduces to l2 = 0, and p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1 reduces to

p2 + l2 = p1. Thus, we see that in all cases the resulting operation is delete(k, 0) for some k, and

this is equivalent to NOOP. For a deletion transformed over delete(p, 0), the relevant rule from

Figure 5.1 is the same. Under the assumption that l2 = 0, p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2 reduces

to p2 = p1 + l1, p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2 reduces to l1 = 0, and p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1

reduces to p1 = p2. Thus, the result is always the original operation.

Thus, insert(p, “”) and delete(p, 0) have the same transformation sematics, which is what we

set out to verify. Furthermore, we have proved the following theorem:

Theorem 5.1 The operations in Figure 5.1 satisfy the NOOP Property.

See Section 3.3.5 for a description of the NOOP Property.

We are now justified in using the representations insert(p, “”), delete(p, 0), and NOOP inter-

changeably. Since we know from Corollary 1 of Theorem 3.13 that TP2 is necessary for the set

of text buffer operations, we would also like to know whether the transforms in Figure 5.1 satisfy

TP2. In fact they do:

Theorem 5.2 The operations in Figure 5.1 satisfy TP2.

Proof The proof is omitted as it is quite long and adds little to the discussion. The interested

reader is referred to Appendix A.

5.1.3 CCU Object Specification

We now begin our construction of a shared text buffer application. We will follow the procedure

outlined in Section 4.2.7. As noted in this procedure, our first task is to create a structure that

outlines the characteristics of the shared state and operations, and defines the transformation

semantics. Our implementation of this structure is as follows:
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structure CCUTextBuf = struct

type state = char list

val stateToString = implode

datatype operation = Insert of int * string | Delete of int * int

fun operationToString (Insert(n, s)) =

"Insert(" ^ Int.toString n ^ ",\"" ^ s ^ "\")"

| operationToString (Delete(m, n)) =

"Delete(" ^ Int.toString m ^ "," ^ Int.toString n ^ ")"

exception BadUpdate

fun apply(Insert(1,b), x) = (explode b) @ x

| apply(Insert(a,b), x::xs) = if a <= 0 then raise BadUpdate

else x :: apply(Insert(a-1,b), xs)

| apply(Delete(1,0), x) = x

| apply(Delete(1,b), _::xs) = if b < 0 then raise BadUpdate

else apply(Delete(1, b-1), xs)

| apply(Delete(a,b), x::xs) = if a <= 0 then raise BadUpdate

else x :: apply(Delete(a-1,b), xs)

| apply _ = raise BadUpdate

nonfix /

fun / (i as Insert(a, b), Insert(c, d)) =

if a < c then i else Insert(a + size d, b)

| / (Delete(a,b), Delete(c,d)) =

if a + b <= c then

Delete(a, b)

else if a <= c andalso c <= a + b andalso a + b <= c + d then

Delete(a, c - a)

else if a <= c andalso c <= c + d andalso c + d <= a + b then

Delete(a, d - b)
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else if c <= a andalso a <= a + b andalso a + b <= c + d then

Delete(a, 0)

else if c <= a andalso a <= c + d andalso c + d <= a + b then

Delete(c, a + b - c - d)

else

Delete(a - d, b)

| / (Delete(a,b), Insert(c,d)) =

if a + b <= c then

Delete(a, b)

else if a <= c andalso c < a + b then

Delete(a, b + size d)

else

Delete(a + size d, b)

| / (Insert(a,b), Delete(c,d)) =

if a < c then

Insert(a, b)

else if c <= a andalso a < c + d then

Insert(c, "")

else

Insert(a - d, b)

fun \ (i as Insert(a, b), Insert(c, d)) =

if a <= c then i else Insert(a + size d, b)

| \ x = / x

end

Notice that this structure conforms to the signature CCUOBJ, specified in Section 4.2.4. We

represent the application state as a list of characters. The function implode from the ML Standard

Basis converts character lists to strings, so we use this function as our definition of stateToString.

Our operation type is a tagged pair representing either an insertion or a deletion. The function

operationToString converts values of type operation to strings, and is straightforward. The

function apply provides the semantics of values of type operation; it defines what it means to

apply an insertion or a deletion to a list of characters. Finally, the functions / and \ implement
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the transformation rules on operations.

We have not indicated conformance to CCUOBJ in the definition of our CCUTextBuf structure

(that is, we did not write structure CCUTextBuf : CCUOBJ = struct . . . ). This omission was

intentional; we want to export the constructors Insert and Delete, which are not contained in

CCUOBJ.

Our structure also illustrates a benefit of using a type to represent operations. By using ML’s

datatype construction, we can make our operations resemble actual functions, even though they

are simply tagged pairs. Furthermore, we can use ML’s pattern-matching facilities when defining

/ and \.

5.1.4 Driver

Next we will write a driver specification for our shared text buffer. Recall that the purpose of the

driver is to act as an interface between the user at a site and that site’s instance of the shared

object. However, since we are running on a simulated network at a single site, our options for

implementing communication between drivers and users are somewhat limited. Consequently, we

will write drivers that issue updates based on script files.

Our driver will consist of two structures: a structure Driver that contains the interface to

the shared object, and a structure GetCommands that reads commands out of a script file. We

will present only Driver here; the interested reader can find the source for GetCommands in

Appendix B.

The Driver structure is as follows:

structure Driver: DRIVER = struct

structure TS = Timestamp

structure C = GetCommands

structure TB = TextBuf

type operation = TB.operation

datatype message = datatype TB.message

type commtoken = TB.commtoken

exception Done of TS.timestamp

type init = string
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(* counter to properly assign input files *)

val x = ref 1

fun initialize () = x := 1

fun initData () = ("dr" ^ Int.toString(!x) ^ ".cmd") before x := !x + 1

abstype driver = Driver of (unit->commtoken) * TS.timestamp * string

with

fun mkdriver f t s = Driver (f, t, s)

fun main (Driver (f, t, s)) =

let

val comStream = C.mkCommandStream s

val commToken = f ()

fun mainLoop ts =

let

val c = C.getCommand comStream

in

TextIO.print (s ^ "\n");

case c of

C.Delay x => (

CML.sync (

CML.timeOutEvt (

Time.fromMicroseconds (Int32.fromInt x)

)

);

mainLoop ts

)

| C.Operation x => mainLoop (

TB.update(commToken, MSG(x, ts))

handle _ => raise Done(ts)



CHAPTER 5. APPLICATIONS 74

)

| C.Quit => raise Done ts

end

handle C.EOF => raise Done ts

in

mainLoop t

handle Done ts => (TB.send(commToken, QUIT ts);

C.closeCommandStream comStream)

end

end

end

The driver recognizes three types of commands: operations (i.e. insertions and deletions), delay

directives, and quit directives. These types of commands are encapsulated in the type command,

which is defined in the structure GetCommands as follows:

datatype command = Operation of operation | Delay of int | Quit

GetCommands also defines a type commandstream to represent a source of commands from the

script file, as well as functions to intialize, close, and retrieve commands from a commandstream.

The driver has been written to conform to the DRIVER signature, so that we may use the

InitFn functor (see Section 4.2.5). The type driver is simply an encapsulation of the three

parameters of mkdriver: a function to start the shared object instance, an initial timestamp,

and an auxiliary initialization value of type init. In our implementation, init is a synonym for

string; we are initializing the driver with the name of the script file. The k-th instance of the

driver will read from the file drk.cmd, and the function initData will return this string upon

its k-th invocation (the functor InitFn will generate the code to invoke initData once for each

driver we wish to create).

The function main starts the driver. It initializes the commandstream and starts the shared

objects. It then invokes mainloop which recurses on itself until it process a quit directive or

reaches the end of the script file. At this point, it raises the exception Done, and main signals the

shared object to quit and closes the commandstream.

During the operation of mainloop, the driver repeatedly gets the next command and processes

it. If the command is a delay directive, then the the driver synchronizes on a timeout event that
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becomes ready after the specified delay interval has expired. If the command is an operation,

then the driver issues the update, retrieves the new timestamp, and recurses. If the command is

a quit directive, then the driver raises the exception Done.

Notice that the Driver structure refers to a structure called TextBuf, which we have not yet

defined. This structure is the shared object instance, and has signature CCUAPI. We create this

structure next.

5.1.5 Completing the Implementation

To complete our implementation of a transformation-based shared text buffer, we need three

more structures. We first create the actual shared object instance structure from our CCUTextBuf

structure. We do this by invoking our CCU functor:

structure TextBuf = CCU(structure ccuobj = CCUTextBuf)

Next, we create the initialization code for our system, by invoking our InitFn functor:

structure Init = InitFn(structure Obj = TextBuf; structure D = Driver)

Finally, we create a mainline structure to set everything in motion:

structure Mainline: sig

val main : (int * string) -> unit

end

= struct

fun main (n, initState) = ignore (

RunCML.doit(fn () => Init.init(n,explode initState), NONE)

)

end

The structure Mainline exports a single function, called main. main takes as arguments an

integer representing the number of sites and a string representing the initial state of the text

buffer. main then starts up the CML environment and invokes the initialization code in Init,

which in turn starts the system. main returns when (if) the entire system terminates.
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5.1.6 A Sample Run

In this section, we will illustrate our shared text buffer’s behaviour by running it on some sample

input. The input data takes the form of script files for the drivers. We will run our system

with three sites; therefore, we will need three script files, called dr1.cmd, dr2.cmd, and dr3.cmd.

dr1.cmd is as follows:

i 1 a

q

This script instructs site 1 to insert the string “a” at position 1, and then quit. dr2.cmd and

dr3.cmd are similar, except that site 2 is instructed to insert “b” at position 1 and site 3 is

instructed to insert “c” at position 1.

Having set up our script files, we now start our system as follows:

Mainline.main(3,"");

This invocation of main initializes our text buffer with three sites and the empty string as the

initial state. Once main has been called, the system runs until all sites have quit.

The CCU library contains a debugging module, which, if enabled, allows us to examine the

progress and outcome of the shared computation. With debugging enabled, each shared object

writes its actions to the screen and to a log file. Each site has its own log file; site n uses the file

siten.log as its log file. Figure 5.2 contains a sample of the messages that are printed to the

screen. For the sake of clarity, only messages from Site 2 have been reproduced here; in the real

system, messages from Sites 1 and 3 would be interleaved.

Each log file ends with a line of the form Final state is x. Thus, to see that our system

has performed correctly, we simply execute

grep Final *.log

Our call to grep produces the following as output:

site1.log:Final state is cba.

site2.log:Final state is cba.

site3.log:Final state is cba.

Here we see that the three sites have converged on a common state, which is the desired outcome.
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Creating site 2 with initial state

Received local update Insert(1,"b") with timestamp (0,0,0).

Transformed to Insert(1,"b").

New state is b.

Received local QUIT message with timestamp (0,1,0).

Site 2 received NQUIT message from site 2 with timestamp (0,1,0).

Site 2 received message Insert(1,"a") from site 1 with timestamp (0,0,0).

Transformed to Insert(2,"a").

New timestamp is (1,1,0).

New state is ba.

Site 2 received NQUIT message from site 1 with timestamp (1,0,0).

Site 2 received message Insert(1,"c") from site 3 with timestamp (0,0,0).

Transformed to Insert(1,"c").

New timestamp is (1,1,1).

New state is cba.

Site 2 received NQUIT message from site 3 with timestamp (0,0,1).

Site 2 terminating.

Final state is cba.

Figure 5.2: Sample output from the shared text buffer.
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5.2 Other Transformation-Based Objects

In this section, we will consider other kinds of shared objects, upon which we could build a

transformation-based system.

Our first observation is that, although we represented the shared text buffer as a list of

characters, nothing in our analysis or our implementation fundamentally relies on the fact that

the elements of the list are characters. Therefore, we can use the transformation rules we currently

have for any list-based state.

For example, we could represent a shared presentation as a list of slides. Insertion and deletion

of slides can be governed by our current set of insertion and deletion rules. Since we already know

that TP2 holds on these rules (see Appendix A), we do not have to do any of our own verification.

Concurrent edits on a single slide could be handled in several ways. The simplest approach is

to treat each slide as an atomic entity and disallow concurrent edits. Slides would be created at the

driver level and then uploaded to the shared state when they are complete. This approach most

closely models the shared text buffer example, in which characters (which can only be inserted

or deleted, but not edited) take the place of slides; however, it offers the least opportunity for

collaboration. A more reasonable approach is to model each slide as a sequence of design elements

(e.g. text boxes, drawings, bulletted lists). Then we can again use the standard insertion and

deletion techniques, but this time at the level of a single slide. Furthermore, if desired, we could

allow concurrent editing of a single design element within a slide, e.g. a text box. Again, we

can use the standard insertion and deletion rules at this finer level of detail. We can continue

pushing the insertion and deletion rules down to finer and finer granularities, until we achieve the

flexibility we feel we need. Verification of TP2 on this system should be straightforward.

Next, we observe that the shared text buffer itself could be used in more abstract ways. Many

real-world objects are easily modeled by text. Using markup languages like XML[8], we can

encode anything from purchase orders to building plans as structured text. Complex edits on

these documents can be expressed as sequences of insertions and deletions on the underlying text.

Because of Theorem 3.14, we can get TP2 for free.

Text buffers and abstract lists are good for modelling state that is linear in nature. For

non-linear data, we may desire some other underlying representation. For example, for bitmap

images, we might like some state representation capable of representing two dimensions. One

obvious approach to representing two-dimensional data is to use a list of lists. A more direct

approach was suggested by Palmer and Cormack[16], who give a set of operations and transforms
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for a shared spreadsheet. Compliance of these operations with TP2 is still an open question, and

is left to future investigation.



Chapter 6

Conclusions and Future Work

In this chapter, we provide concluding remarks and indicate possible topics of further investiga-

tion.

6.1 Summary

This thesis explores the problem of maintaining a consistent shared state in groupware systems.

Rather than employ traditional locking mechanisms, we consider a transformation-based approach

that creates the illusion of a common execution history across all sites in the system. Despite the

fact that this technique has been around since 1989[6], the underlying theory has not received

much attention. In this thesis, we develop a formal treatment of operation transforms based on

Ressel’s interaction models. We then used this theory to build a provably correct framework for

constructing transformation-based systems.

Our specific contributions in this thesis are as follows:

• We define correctness criteria for groupware systems that are more generally applicable

than the original criteria of Ellis and Gibbs.

• We give a formal treatment of the theory of operation transforms. Using Ressel’s interaction

models as a basis for our reasoning, we show equivalence between the CCU algorithm

and the adOPTed algorithm. Further, we show that with Ressel’s TP2 as an additional

precondition, Hendrie’s counterexample to the modified CCU algorithm disappears and the

modified CCU algorithm becomes correct.

80



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 81

• We show that TP2 is a necessary condition for correctness in several important cases and

conjecture that it is necessary in general. Finally, we give a few techniques for simplifying

the task of verifying TP2 on a set of transforms.

• We show that the canonical text buffer operations satisfy TP2.

• We construct a framework for building transformation-based groupware systems. This

framework is an implementation of the theory developed in Chapter 3 and as such, is

provably correct.

• We demonstrate the use of our framework by implementing a shared text buffer.

6.2 Future Work

In the sections that follow, we outline some areas for further research that would augment our

current study.

6.2.1 Necessity of TP2

In Section 3.3.4, we showed that, in several instances, TP2 is a necessary condition for Strong

Convergence, and conjectured that it is a necessary condition in general. To complete the theory

of operation transforms, we would like to settle this issue, with either a proof of necessity or

an example of a strongly-convergent system on more than two sites that does not satisfy TP2.

Based on the necessity results that we already have, we expect that a counterexample, if one

exists, would be highly unintuitive.

6.2.2 Deployment on a Real Network

To complete our CCU library, we need to remove the simulated network module and deploy

the system on an actual network. Before we can deploy to a real network we need to address

two issues. First, sockets in SML/NJ currently cannot carry arbitrary data types; they can

only carry byte vectors. Thus, in order to relay messages over sites, we need to marshall them.

Marshalling site IDs and timestamps is not difficult, but we must rely on the application designer

to supply the marshalling and unmarshalling routines for operations. Thus, we must extend the

CCUOBJ signature with two functions, marshall and unmarshall of type operation -> string

and string -> operation, respectively.
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The second issue a “real” implementation must address is deployment. The entire system

compiles on a single machine, but each instance of the shared state is supposed to run at a

different physical location. A straightforward approach to the deployment problem might be to

make SML/NJ generate a separate heap image for each site. We could then manually install

each instance at its respective site. Clearly, we would prefer a solution that required less human

intervention. To circumvent the manual installation problem would probably require installing a

“listener” process at each potential site that can receive heap images over a network and install

them. Under this scenario, we would still have to install the listener manually, but the same

listener process could then be used to install multiple groupware systems.

6.2.3 A Dynamic Set of Participants

All of the theory and implementation in this thesis has relied on the assumption that the set of

participants in the system is static. In reality, we would like to allow participants to enter and

exit the collaboration process throughout its lifetime.

The assumption of a dynamic set of participants has no real effect on the theory. From a

theoretical point of view, a participant who quits is no different from a participant who remains

on line but ceases to issue updates. Similarly, a new participant is no different from a participant

who was always there but has only just begun to issue updates. Thus, a correct system with a

static set of participants will continue to be correct if we make the set of participants dynamic.

However, a proper implementation of a system with a dynamic set of participants does cause

some difficulty. A major problem is the creation of unambiguous timestamps. Suppose we provide

a primitive called fork that a site can issue to create a new instance of the shared object at a

specified location. Now suppose, in an n-site system, site k calls fork. The new site k′ needs

its own component of the timestamp in which to operate, and so we need to expand all of

our timestamps by one component. We then assign the (n + 1)-st component to the new site.

However, suppose that site l has concurrently called fork. The new site l′ would also be assigned

component n+1. Thus, sites hearing about site k′ first would assign it component n+1 and site

l′ component n + 2, while sites hearing about site l′ first would do the reverse. Further, sites k′

and l′ themselves will both think that the (n + 1)-st component is theirs.

A possible solution to this problem might be to have an independent arbiter assign timestamp

components. However, this solution poses all of the problems that we noted in Chapter 1 with

respect to lock servers. We believe a more promising solution would be to restructure the times-

tamps. Instead of representing timestamps as tuples of integers, we might represent them as trees
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of integers. Then, when sites k and l create new sites k′ and l′, respectively, site k′’s component

will be a child of the k-th component of the original timestamp, while site l′’s component will be

a child of the l-th component. In this way, we can assign timestamps unambiguously.

6.2.4 Checkpoints

In both the CCU and adOPTed algorithms, each site maintains a log of previously-applied up-

dates. These logs provide the execution history against which incoming updates are transformed.

As the collaborative effort progresses, the update logs grow. Enforcing a checkpoint protocol,

under which we could draw periodic conclusions about the progress of the entire system would

allow us to remove old entries from the log. If it is somehow known that at some instant during

the collaborative process, each site has a timestamp equal to at least (a1, . . . , an), then any newly

issued update will causally succeed the first ai updates from site i, for each i. Hence, the newly

issued update cannot be concurrent with any of these updates and will never be transformed

against them. Therefore, we can flush these old updates from the log. Note that knowledge

about the minimum timestamp across all sites in the system implies knowledge of the complete

set of participants. Thus, reconciling the need for checkpoints with the need for a dynamic set of

participants may prove difficult.

6.2.5 Time and Space Complexity

The CCU algorithm computes transforms via the | operator, whose definition is doubly recursive.

Thus, the cost of computing transforms under CCU is potentially exponential in the number

of updates in the log. Ressel addresses this issue in his adOPTed algorithm. The adOPTed

algorithm, as it appears in Ressel[18], memoizes the result every time it computes a transform.

In effect, adOPTed realizes the interaction model of the system as a data structure in memory

at each site. Thus, previously computed transforms are not recomputed, as they are in CCU.

However, the size of the interaction model is, in the worst case, on the order of mn, where m is

the number of updates in the log and n is the number of sites. In practice, we do not believe

that the worst case is likely to materialize unless all sites are feverishly active at once, but further

study is required to test our intuituion.

With a checkpoint system in place, we would be able to discard older portions of the interaction

model, just as we could discard older log entries. We believe that, with the resulting space savings,

computing transforms would become tractable for large numbers of sites, but a proper analysis
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of the complexity of the system under memoization and a study of what constitutes “typical”

activity of groupware users are needed before we can draw any real conclusions. While it may

turn out that the number of sites that a transformation-based system can handle before the

exponential nature of computing transforms renders the system impractically slow is limited, we

believe that if this limit exists, it is probably high enough to support most real-world demands.



Appendix A

Verification of TP2 for Text Buffer

Operations

In this appendix, we prove Theorem 5.2; that is, we show that the text buffer operations defined

in Figure 5.1 (Section 5.1.1) satisfy TP2. In Corollary 1 of Theorem 3.13, we showed that for

the text buffer operations, TP2 is a necessary condition for Strong Convergence. Recall that the

text buffer operations take the following form:

insert(p, s)—inserts the string s into the buffer at position p, p ≥ 1;

delete(p, l)—deletes l consecutive characters from the buffer starting at position p, p ≥ 1.

We can rephrase these operations as compositions of the following operations:

ins(p, c)—inserts the character c into the buffer at position p, p ≥ 1;

del(p, l)—deletes l consecutive characters from the buffer starting at position p, p ≥ 1, l ≥ 1;

NOOP—does nothing1.

Since TP2 is known to be necessary on the set of text buffer operations, by Theorem 3.14,

we can verify TP2 on the original operations by verifying TP2 on this new set, which is some-

what simpler (insertions are all of length 1). Notice that we cannot restrict deletions to single

1Our replacement of delete(p, 0) with NOOP is justified by Theorem 5.1. However, for convenience, we will

allow del(p, 0) to act as a synonym for NOOP.
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characters. If a deletion occurs at the same posistion as an insertion, then the deletion must be

transformed to remove both the character to be deleted and the character just inserted. Therefore,

the set of single-character insertions and deletions would not be closed under .̂

This adjustment of the set of operations leaves the transformation rules largely unchanged.

The major difference is that all references to the length of the string parameter of insertions

become 1 (except in the case of insert(p, “”), which becomes NOOP). Thus, for example, we now

have

ins(p1, c1)/ins(p2, c2) =

{

ins(p1, c1) (p1 < p2)

ins(p1 + 1, c1) (p2 ≤ p1)

ins(p1, c1)\ins(p2, c2) =

{

ins(p1, c1) (p1 ≤ p2)

ins(p1 + 1, c1) (p2 < p1)

We now proceed with our verification of TP2. Let a, b, and c be updates2 with T (a) < T (b) <

T (c). There are eight cases to consider:

Case 1 a = ins(p1, c1), b = ins(p2, c2), c = ins(p3, c3).

We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): Based on the total ordering of a, b, and c, we have (â b)̂ (ĉ b) =

(a\b)\(c/b) and (â c)̂ (b̂ c) = (a\c)\(b\c). We then have

(a\b)\(c/b) = (ins(p1, c1)\ins(p2, c2))\(ins(p3, c3)/ins(p2, c2))

=

(

ins(p1, c1) (p1 ≤ p2)

ins(p1 + 1, c1) (p2 < p1)

)∖(

ins(p3, c3) (p3 < p2)

ins(p3 + 1, c3) (p2 ≤ p3)

)

,

which evaluates as follows:

p3 < p2 p3 ≥ p2

p1 ≤ p2 ins(p1, c1)\ins(p3, c3) ins(p1, c1)\ins(p3 + 1, c3)

p1 > p2 ins(p1 + 1, c1)\ins(p3, c3) ins(p1 + 1, c1)\ins(p3 + 1, c3)

2In order to avoid the confusion of excess notation, we will relax the distinction between updates and operations.

In particular, we will allow statements like a = ins(p1, c1) that equate an update with an operation. Further, we

will allow / and \ to be applied to updates, even though they were defined over operations.
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=

p3 < p2 p3 ≥ p2

p1 ≤ p2

ins(p1, c1) (p1 ≤ p3)

ins(p1 + 1, c1) (p1 > p3)

ins(p1, c1) (p1 ≤ p3 + 1)

ins(p1 + 1, c1) (p1 > p3 + 1)

p1 > p2

ins(p1 + 1, c1) (p1 + 1 < p3)

ins(p1 + 2, c1) (p1 + 1 ≥ p3)

ins(p1 + 1, c1) (p1 + 1 ≤ p3 + 1)

ins(p1 + 2, c1) (p1 + 1 > p3 + 1)

=

p3 < p2 p3 ≥ p2

p1 ≤ p2

ins(p1, c1) (p1 ≤ p3)

ins(p1 + 1, c1) (p1 > p3)
ins(p1, c1)

p1 > p2 ins(p1 + 2, c1)
ins(p1 + 1, c1) (p1 ≤ p3)

ins(p1 + 2, c1) (p1 > p3)

.

Also, we have

(a\c)\(b\c) = (ins(p1, c1)\ins(p3, c3))\(ins(p2, c2)\ins(p3, c3))

=

(

ins(p1, c1) (p1 ≤ p3)

ins(p1 + 1, c1) (p3 < p1)

)∖(

ins(p2, c2) (p2 ≤ p3)

ins(p2 + 1, c2) (p3 < p2)

)

,

which evaluates as follows:

p2 ≤ p3 p3 < p2

p1 ≤ p3 ins(p1, c1)\ins(p2, c2) ins(p1, c1)\ins(p2 + 1, c2)

p3 < p1 ins(p1 + 1, c1)\ins(p2, c2) ins(p1 + 1, c1)\ins(p2 + 1, c2)

=

p2 ≤ p3 p3 < p2

p1 ≤ p3

ins(p1, c1) (p1 ≤ p2)
ins(p1 + 1, c1) (p1 > p2)

ins(p1, c1) (p1 ≤ p2 + 1)
ins(p1 + 1, c1) (p1 > p2 + 1)

p3 < p1

ins(p1 + 1, c1) (p1 + 1 ≤ p2)
ins(p1 + 2, c1) (p1 + 1 > p2)

ins(p1 + 1, c1) (p1 + 1 ≤ p2 + 1)
ins(p1 + 2, c1) (p1 + 1 > p2 + 1)

=

p2 ≤ p3 p3 < p2

p1 ≤ p3

ins(p1, c1) (p1 ≤ p2)
ins(p1 + 1, c1) (p1 > p2)

ins(p1, c1)

p3 < p1 ins(p1 + 2, c1)
ins(p1 + 1, c1) (p1 ≤ p2)

insert(p1 + 2, c1) (p1 > p2)

.

Comparing this table with the previous one, we see that they are equivalent. Hence (a\b)\(c/b) =

(a\c)\(b\c), i.e. (â b)̂ (ĉ b) = (â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)

and (b̂ c)̂ (â c) = (b\c)/(a\c). We then have
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(b/a)\(c/a) = (ins(p2, c2)/ins(p1, c1))\(ins(p3, c3)/ins(p1, c1))

=

(

ins(p2, c2) (p2 < p1)

ins(p2 + 1, c2) (p2 ≥ p1)

)∖(

ins(p3, c3) (p3 < p1)

ins(p3 + 1, c3) (p3 ≥ p1)

)

,

which evaluates as follows:

p3 < p1 p3 ≥ p1

p2 < p1 ins(p2, c2)\ins(p3, c3) ins(p2, c2)\ins(p3 + 1, c3)

p2 ≥ p1 ins(p2 + 1, c2)\ins(p3, c3) ins(p2 + 1, c2)\ins(p3 + 1, c3)

=

p3 < p1 p3 ≥ p1

p2 < p1

ins(p2, c2) (p2 ≤ p3)
ins(p2 + 1, c2) (p2 > p3)

ins(p2, c2) (p2 ≤ p3 + 1)
ins(p2 + 1, c2) (p2 > p3 + 1)

p2 ≥ p1

ins(p2 + 1, c2) (p2 + 1 ≤ p3)
ins(p2 + 2, c2) (p2 + 1 > p3)

ins(p1 + 1, c1) (p2 + 1 ≤ p3 + 1)
ins(p2 + 2, c2) (p2 + 1 > p3 + 1)

=

p3 < p1 p3 ≥ p1

p2 < p1

ins(p2, c2) (p2 ≤ p3)
ins(p2 + 1, c2) (p2 > p3)

ins(p2, c2)

p2 ≥ p1 ins(p2 + 2, c2)
ins(p1 + 1, c2) (p2 ≤ p3)
ins(p2 + 2, c2) (p2 > p3)

.

Also, we have

(b\c)/(a\c) = (ins(p2, c2)\ins(p3, c3))/(ins(p1, c1)\ins(p3, c3))

=

(

ins(p2, c2) (p2 ≤ p3)

ins(p2 + 1, c2) (p2 > p3)

)/(

ins(p1, c1) (p1 ≤ p3)

ins(p1 + 1, c1) (p1 > p3)

)

,

which evaluates as follows:

p1 ≤ p3 p1 > p3

p2 ≤ p3 ins(p2, c2)/ins(p1, c1) ins(p2, c2)/ins(p1 + 1, c1)

p2 > p3 ins(p2 + 1, c2)/ins(p1, c1) ins(p2 + 1, c2)/ins(p1 + 1, c1)

=

p1 ≤ p3 p1 > p3

p2 ≤ p3

ins(p2, c2) (p2 < p1)
ins(p2 + 1, c2) (p2 ≥ p1)

ins(p2, c2) (p2 < p1 + 1)
ins(p2 + 1, c2) (p2 ≥ p1 + 1)

p2 > p3

ins(p2 + 1, c2) (p2 + 1 < p1)
ins(p2 + 2, c2) (p2 + 1 ≥ p1)

ins(p2 + 1, s2) (p2 + 1 < p1 + 1)
ins(p2 + 2, c2) (p2 + 1 ≥ p1 + 1)

=

p1 ≤ p3 p1 > p3

p2 ≤ p3

ins(p2, c2) (p2 < p1)
ins(p2 + 1, c2) (p2 ≥ p1)

ins(p2, c2)

p2 > p3 ins(p2 + 2, c2)
ins(p2 + 1, c2) (p2 < p1)
ins(p2 + 2, c2) (p2 ≥ p1)

.
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Comparing this table with the previous one, we see that they are equivalent. Hence, (b/a)\(c/a) =
(b\c)/(c\a), i.e. (b̂ a)̂ (ĉ a).

(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)
and (ĉ b)̂ (â b) = (c/b)/(a\b). We then have

(c/a)/(b/a) = (ins(p3, c3)/ins(p1, c1))/(ins(p2, c2)/ins(p1, c1))

=

(

ins(p3, c3) (p3 < p1)

ins(p3 + 1, c3) (p3 ≥ p1)

)/(

ins(p2, c2) (p2 < p1)

ins(p2 + 1, c2) (p2 ≥ p1)

)

,

which evaluates as follows:

p2 < p1 p2 ≥ p1

p3 < p1 ins(p3, c3)/ins(p2, c2) ins(p3, c3)/ins(p2 + 1, c2)

p3 ≥ p1 ins(p3 + 1, c3)/ins(p2, c2) ins(p3 + 1, c3)/ins(p2 + 1, c2)

=

p2 < p1 p2 ≥ p1

p3 < p1

ins(p3, c3) (p3 < p2)
ins(p3 + 1, c3) (p3 ≥ p2)

ins(p3, c3) (p3 < p2 + 1)
ins(p3 + 1, c3) (p3 ≥ p2 + 1)

p3 ≥ p1

ins(p3 + 1, c3) (p3 + 1 < p2)
ins(p3 + 2, c3) (p3 + 1 ≥ p2)

ins(p3 + 1, c3) (p3 + 1 < p2 + 1)
ins(p3 + 2, s3) (p3 + 1 ≥ p2 + 1)

=

p2 < p1 p2 ≥ p1

p3 < p1

ins(p3, c3) (p3 < p2)
ins(p3 + 1, c3) (p3 ≥ p2)

ins(p3, c3)

p3 ≥ p1 ins(p3 + 2, c3)
ins(p3 + 1, c3) (p3 < p2)
ins(p3 + 2, c3) (p3 ≥ p2)

.

Also, we have

(c/b)/(a\b) = (ins(p3, c3)/ins(p2, c2))/(ins(p1, c1)\ins(p2, c2))

=

(

ins(p3, c3) (p3 < p2)

ins(p3 + 1, c3) (p3 ≥ p2)

)/(

ins(p1, c1) (p1 ≤ p2)

ins(p1 + 1, c1) (p1 > p2)

)

,
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which evaluates as follows:

p1 ≤ p2 p1 > p2

p3 < p2 ins(p3, c3)/ins(p1, c1) ins(p3, c3)/ins(p1 + 1, c1)

p3 ≥ p2 ins(p3 + 1, c3)/ins(p1, c1) ins(p3 + 1, c3)/ins(p1 + 1, c1)

=

p1 ≤ p2 p1 > p2

p3 < p2

ins(p3, c3) (p3 < p1)
ins(p3 + 1, c3) (p3 ≥ p1)

ins(p3, c3) (p3 < p1 + 1)
ins(p3 + 1, c3) (p3 ≥ p1 + 1)

p3 ≥ p2

ins(p3 + 1, c3) (p3 + 1 < p1)
ins(p3 + 2, c3) (p3 + 1 ≥ p1)

ins(p3 + 1, c3) (p3 + 1 < p1 + 1)
ins(p3 + 2, c3) (p3 + 1 ≥ p1 + 1)

=

p1 ≤ p2 p1 > p2

p3 < p2

ins(p3, c3) (p3 < p1)
ins(p3 + 1, c3) (p3 ≥ p1)

ins(p3, c3)

p3 ≥ p2 ins(p3 + 2, c3)
ins(p3 + 1, c3) (p3 < p1)
ins(p3 + 2, c3) (p3 ≥ p1)

.

Comparing this table with the previous one, we see that they are equivalent. Hence, (c/a)/(b/a) =
(c/b)/(a\b), i.e., (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 1.

Case 2 a = del(p1, l1), b = ins(p2, c2), c = ins(p3, c3).

For this case, and the next two, we will treat the case that the insertions operate at the same
position as separate from the general case. The advantage of this approach is that, in the gen-
eral case, / and \ over two insertions can be treated as identical transforms (since they differ
only when the insertion points are the same, which we assume is not the case). The result is
greater opportunity to reuse some of our work. We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c),
(b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)
and (â c)̂ (b̂ c) = (a\c)\(b\c). We have

(a\b)\(c/b) = (del(p1, l1)\ins(p2, c2))\(ins(p3, c3)/ins(p2, c2)),

(a\c)\(b\c) = (del(p1, l1)\ins(p3, c3))\(ins(p2, c2)\ins(p3, c3)).
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Let us first assume that p2 = p3. Then we have

(a\b)\(c/b) =





del(p1, l1) (p1 + l1 ≤ p2)
del(p1, l1 + 1) (p1 ≤ p2 < p1 + l1)

del(p1 + 1, l1) (p2 < p1)





∖

ins(p3 + 1, c3)

=







del(p1, l1)\ins(p3 + 1, c3) (p1 + l1 ≤ p2)
del(p1, l1 + 1)\ins(p3 + 1, c3) (p1 ≤ p2 < p1 + l1)
del(p1 + 1, l1)\ins(p3 + 1, c3) (p2 < p1)

=







del(p1, l1) (p1 + l1 ≤ p2)
del(p1, l1 + 2) (p1 ≤ p2 < p1 + l1)
del(p1 + 2, l1) (p2 < p1)

.

Also,

(a\c)\(b\c) =





del(p1, l1) (p1 + l1 ≤ p3)
del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1) (p3 < p1)





∖

ins(p2, c2)

=







del(p1, l1)\ins(p2, c2) (p1 + l1 ≤ p3)
del(p1, l1 + 1)\ins(p2, c2) (p1 ≤ p3 < p1 + l1)
del(p1 + 1, l1)\ins(p2, c2) (p3 < p1)

=







del(p1, l1) (p1 + l1 ≤ p3)
del(p1, l1 + 2) (p1 ≤ p3 < p1 + l1)
del(p1 + 2, l1) (p3 < p1)

,

and we see that (a\b)\(c/b) = (a\c)\(b\c). Now suppose that p2 6= p3. Then we have

(a\b)\(c/b) =





del(p1, l1) (p1 + l1 ≤ p2)
del(p1, l1 + 1) (p1 ≤ p2 < p1 + l1)

del(p1 + 1, l1) (p2 < p1)





∖(

ins(p3, c3) (p3 < p2)

ins(p3 + 1, c3) (p3 > p2)

)

,

which evaluates as follows:

p3 < p2 p3 > p2

p1 + l1 ≤ p2 del(p1, l1)\ins(p3, c3) del(p1, l1)\ins(p3 + 1, c3)

p1 ≤ p2 < p1 + l1 del(p1, l1 + 1)\ins(p3, c3) del(p1, l1 + 1)\ins(p3 + 1, c3)

p2 < p1 del(p1 + 1, l1)\ins(p3, c3) del(p1 + 1, l1)\ins(p3 + 1, c3)
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=

p3 < p2 p3 > p2

p1 + l1 ≤ p2

del(p1, l1)
(p1 + l1 ≤ p3)

del(p1, l1 + 1)
(p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1)
(p3 < p1)

del(p1, l1)
(p1 + l1 ≤ p3 + 1)

del(p1, l1 + 1)
(p1 ≤ p3 + 1 < p1 + l1)

del(p1 + 1, l1)
(p3 + 1 < p1)

p1 ≤ p2 < p1 + l1

del(p1, l1 + 1)
(p1 + l1 + 1 ≤ p3)

del(p1, l1 + 2)
(p1 ≤ p3 < p1 + l1 + 1)

del(p1 + 1, l1 + 1)
(p3 < p1)

del(p1, l1 + 1)
(p1 + l1 + 1 ≤ p3 + 1)

del(p1, l1 + 2)
(p1 ≤ p3 + 1 < p1 + l1 + 1)

del(p1 + 1, l1 + 1)
(p3 + 1 < p1)

p2 < p1

del(p1 + 1, l1)
(p1 + l1 + 1 ≤ p3)

del(p1 + 1, l1 + 1)
(p1 + 1 ≤ p3 < p1 + l1 + 1)

del(p1 + 2, l1)
(p3 < p1 + 1)

del(p1 + 1, l1)
(p1 + l1 + 1 ≤ p3 + 1)

del(p1 + 1, l1 + 1)
(p1 + 1 ≤ p3 + 1 < p1 + l1 + 1)

del(p1 + 2, l1)
(p3 + 1 < p1 + 1)

=

p3 < p2 p3 > p2

p1 + l1 ≤ p2

del(p1, l1) (p1 + l1 ≤ p3)
del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1) (p3 < p1)
del(p1, l1)

p1 ≤ p2 < p1 + l1
del(p1, l1 + 2) (p1 ≤ p3)

del(p1 + 1, l1 + 1) (p3 < p1)
del(p1, l1 + 1) (p1 + l1 ≤ p3)
del(p1, l1 + 2) (p3 < p1 + l1)

p2 < p1 del(p1 + 2, l1)
del(p1 + 1, l1) (p1 + l1 ≤ p3)

del(p1 + 1, l1 + 1) (p1 ≤ p3 < p1 + l1)
del(p1 + 2, l1) (p3 < p1)

.

Also, we have

(a\c)\(b\c) =





del(p1, l1) (p1 + l1 ≤ p3)
del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1) (p3 < p1)





∖(

ins(p2, c2) (p2 < p3)

ins(p2 + 1, c2) (p2 > p3)

)

.

As this is just the expression for (a\b)\(c/b) with subscripts 2 and 3 interchanged (made possible
by our elimination of the case p2 = p3), the resulting table is the previous table with subscripts
2 and 3 interchanged:

p2 < p3 p2 > p3

p1 + l1 ≤ p3

del(p1, l1) (p1 + l1 ≤ p2)
del(p1, l1 + 1) (p1 ≤ p2 < p1 + l1)

del(p1 + 1, l1) (p2 < p1)
del(p1, l1)

p1 ≤ p3 < p1 + l1
del(p1, l1 + 2) (p1 ≤ p2)

del(p1 + 1, l1 + 1) (p2 < p1)
del(p1, l1 + 1) (p1 + l1 ≤ p2)
del(p1, l1 + 2) (p2 < p1 + l1)

p3 < p1 del(p1 + 2, l1)
del(p1 + 1, l1) (p1 + l1 ≤ p2)

del(p1 + 1, l1 + 1) (p1 ≤ p2 < p1 + l1)
del(p1 + 2, l1) (p2 < p1)

.
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Comparing this table with the previous one, we see that they are equivalent. Hence (a\b)\(c/b) =
(a\c)\(b\c), i.e. (â b)̂ (ĉ b) = (â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)
and (b̂ c)̂ (â c) = (b\c)/(a\c). We have

(b/a)\(c/a) = (ins(p2, c2)/del(p1, l1))\(ins(p3, c3)/del(p1, l1)),

(b\c)/(a\c) = (ins(p2, c2)\ins(p3, c3))/(del(p1, l1)\ins(p3, c3)).

Let us first assume that p2 = p3. Then we have

(b/a)\(c/a) =





ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2 < p1 + l1)

ins(p2 − l1, c2) (p1 + l1 ≤ p2)





∖





ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)

ins(p3 − l1, c3) (p1 + l1 ≤ p3)





=







ins(p2, c2)\ins(p3, c3) (p2 < p1)
NOOP\NOOP (p1 ≤ p2 < p1 + l1)
ins(p2 − l1, c2)\ins(p3 − l1, c3) (p1 + l1 ≤ p2)

=







ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2 < p1 + l1)
ins(p2 − l1, c2) (p1 + l1 ≤ p2)

.

Also,

(b\c)/(a\c) = ins(p2, c2)

/





del(p1, l1) (p1 + l1 ≤ p3)
del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1) (p3 < p1)





=







ins(p2, c2)/del(p1, l1) (p1 + l1 ≤ p3)
ins(p2, c2)/del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)
ins(p2, c2)/del(p1 + 1, l1) (p3 < p1)

=







ins(p2 − l1, c2) (p1 + l1 ≤ p3)
NOOP (p1 ≤ p3 < p1 + l1)
ins(p2, c2) (p3 < p1)

,

and we see that (b/a)\(c/a) = (b\c)/(a\c). Now suppose that p2 6= p3. Then we have

(b/a)\(c/a) =





ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2 < p1 + l1)

ins(p2 − l1, c2) (p1 + l1 ≤ p2)





∖





ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)

ins(p3 − l1, c3) (p1 + l1 ≤ p3)



 ,
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which evaluates as follows:

p3 < p1

p1 ≤ p3,
p3 < p1 + l1

p1 + l1 ≤ p3

p2 < p1 ins(p2, c2)\ins(p3, c3) ins(p2, c2)\NOOP ins(p2, c2)\ins(p3 − l1, c3)

p1 ≤ p2,
p2 < p1 + l1

NOOP\ins(p3, c3) NOOP\NOOP NOOP\ins(p3 − l1, c3)

p1 + l1 ≤ p2 ins(p2 − l1, c2)\ins(p3, c3) ins(p2 − l1, c2)\NOOP ins(p2 − l1, c2)\ins(p3 − l1, c3)

=

p3 < p1

p1 ≤ p3,
p3 < p1 + l1

p1 + l1 ≤ p3

p2 < p1

ins(p2, c2)
(p2 < p3)

ins(p2 + 1, c2)
(p3 < p2)

ins(p2, c2)

ins(p2, c2)
(p2 ≤ p3 − l1)

ins(p2 + 1, c2)
(p3 − l1 < p2)

p1 ≤ p2,
p2 < p1 + l1

NOOP NOOP NOOP

p1 + l1 ≤ p2

ins(p2 − l1, c2)
(p2 − l1 ≤ p3)

ins(p2 − l1 + 1, c2)
(p3 < p2 − l1)

ins(p2 − l1, c2)

ins(p2 − l1, c2)
(p2 − l1 < p3 − l1)

ins(p2 − l1 + 1, c2)
(p3 − l1 < p2 − l1)

=

p3 < p1

p1 ≤ p3,
p3 < p1 + l1

p1 + l1 ≤ p3

p2 < p1

ins(p2, c2) (p2 < p3)
ins(p2 + 1, c2) (p3 < p2)

ins(p2, c2) ins(p2, c2)

p1 ≤ p2,
p2 < p1 + l1

NOOP NOOP NOOP

p1 + l1 ≤ p2 ins(p2 − l1 + 1, c2) ins(p2 − l1, c2)
ins(p2 − l1, c2) (p2 < p3)

ins(p2 − l1 + 1, c2) (p3 < p2)

.

Also,

(b\c)/(a\c) =

(

ins(p2, c2) (p2 < p3)
ins(p2 + 1, c2) (p3 < p2)

) /





del(p1, l1) (p1 + l1 ≤ p3)
del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1) (p3 < p1)



 ,
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which evaluates as follows:

p2 < p3 p3 < p2

p1 + l1 ≤ p3 ins(p2, c2)/del(p1, l1) ins(p2 + 1, c2)/del(p1, l1)

p1 ≤ p3 < p1 + l1 ins(p2, c2)/del(p1, l1 + 1) ins(p2 + 1, c2)/del(p1, l1 + 1)

p3 < p1 ins(p2, c2)/del(p1 + 1, l1) ins(p2 + 1, c2)/del(p1 + 1, l1)

=

p2 < p3 p3 < p2

p1 + l1 ≤ p3

ins(p2, c2)
(p2 < p1)

NOOP
(p1 ≤ p2 < p1 + l1)

ins(p2 − l1, c2)
(p1 + l1 ≤ p2)

ins(p2 + 1, c2)
(p2 + 1 < p1)

NOOP
(p1 ≤ p2 + 1 < p1 + l1)

ins(p2 − l1 + 1, c2)
(p1 + l1 ≤ p2)

p1 ≤ p3,
p3 < p1 + l1

ins(p2, c2)
(p2 < p1)

NOOP
(p1 ≤ p2 < p1 + l1 + 1)

ins(p2 − l1 − 1, c2)
(p1 + l1 + 1 ≤ p2)

ins(p2 + 1, c2)
(p2 + 1 < p1)

NOOP
(p1 ≤ p2 + 1 < p1 + l1 + 1)

ins(p2 − l1, c2)
(p1 + l1 + 1 ≤ p2 + 1)

p3 < p1

ins(p2, c2)
(p2 < p1 + 1)

NOOP
(p1 + 1 ≤ p2 < p2 + l1 + 1)

ins(p2 − l1, c2)
(p1 + l1 + 1 ≤ p2)

ins(p2 + 1, c2)
(p1 + 1 < p2 + 1)

NOOP
(p2 + 1 ≤ p1 + 1 < p1 + l1 + 1)

ins(p2 − l1 + 1, c2)
(p1 + l1 + 1 ≤ p2 + 1)

=

p2 < p3 p3 < p2

p1 + l1 ≤ p3

ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2 < p1 + l1)

ins(p2 − l1, c2) (p1 + l1 ≤ p2)
ins(p2 − l1 + 1, c2)

p1 ≤ p3,
p3 < p1 + l1

ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2)

NOOP (p2 < p1 + l1)
ins(p2 − l1, c2) (p1 + l1 ≤ p2)

p3 < p1 ins(p2, c2)
ins(p2 + 1, c2) (p1 < p2)

NOOP (p2 ≤ p1 < p1 + l1)
ins(p2 − l1 + 1, c2) (p1 + l1 ≤ p2)

.

Comparing this table with the previous one, we see that they are equivalent. Thus, (b/a)\(c/a) =
(b\c)/(a\c), i.e. (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c).

(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)
and (ĉ b)̂ (â b) = (c/b)/(a\b). We have

(c/a)/(b/a) = (ins(p3, c3)/del(p1, l1))/(ins(p2, c2)/del(p1, l1)),

(c/b)/(a\b) = (ins(p3, c3)/ins(p2, c2))/(del(p1, l1)\ins(p2, c2)).

First assume that p2 = p3. Then we have
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(c/a)/(b/a) =





ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)

ins(p3 − l1, c3) (p1 + l1 ≤ p3)





/





ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2 < p1 + l1)

ins(p2 − l1, c2) (p1 + l1 ≤ p2)





=







ins(p3, c3)/ins(p2, c2) (p3 < p1)
NOOP/NOOP (p1 ≤ p3 < p1 + l1)
ins(p3 − l1, c3)/ins(p2 − l1, c2) (p1 + l1 ≤ p3)

=







ins(p3 + 1, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)
ins(p3 − l1 + 1, c3) (p1 + l1 ≤ p3)

.

Also,

(c/b)/(a\b) = ins(p3 + 1, c3)

/





del(p1, l1) (p1 + l1 ≤ p2)
del(p1, l1 + 1) (p1 ≤ p2 < p1 + l1)

del(p1 + 1, l1) (p2 < p1)





=







ins(p3 + 1, c3)/del(p1, l1) (p1 + l1 ≤ p2)
ins(p3 + 1, c3)/del(p1, l1 + 1) (p1 ≤ p2 < p1 + l1)
ins(p3 + 1, c3)/del(p1 + 1, l1) (p2 < p1)

=







ins(p3 − l1 + 1, c3) (p1 + l1 ≤ p2)
NOOP (p1 ≤ p2 < p1 + l1)
ins(p3 + 1, c3) (p2 < p1)

,

and we see that (c/a)/(b/a) = (c/b)/(a\b). Now suppose that p2 6= p3. Then we have

(c/a)/(b/a) =





ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)

ins(p3 − l1, c3) (p1 + l1 ≤ p3)





/





ins(p2, c2) (p2 < p1)
NOOP (p1 ≤ p2 < p1 + l1)

ins(p2 − l1, c2) (p1 + l1 ≤ p2)



 ,

which is exactly the expression for (b/a)\(c/a), with subscripts 2 and 3 interchanged. Thus,
(c/a)/(b/a) expands to the following table:

p2 < p1

p1 ≤ p2,
p2 < p1 + l1

p1 + l1 ≤ p2

p3 < p1

ins(p3, c3) (p3 < p2)
ins(p3 + 1, c2) (p2 < p3)

ins(p3, c3) ins(p3, c3)

p1 ≤ p3,
p3 < p1 + l1

NOOP NOOP NOOP

p1 + l1 ≤ p3 ins(p3 − l1 + 1, c3) ins(p3 − l1, c3)
ins(p3 − l1, c3) (p3 < p2)

ins(p3 − l1 + 1, c3) (p2 < p3)

.
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Also,

(c/b)/(a\b) =

(

ins(p3, c3) (p3 < p2)
ins(p3 + 1, c3) (p2 < p3)

) /





del(p1, l1) (p1 + l1 ≤ p2)
del(p1, l1 + 1) (p1 ≤ p2 < p1 + l1)

del(p1 + 1, l1) (p2 < p1)



 ,

which is exactly the expression for (b\c)/(a\c), with subscripts 2 and 3 interchanged. Thus,
(c/b)/(a\b) expands to the following table:

p3 < p2 p2 < p3

p1 + l1 ≤ p2

ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)

ins(p3 − l1, c3) (p1 + l1 ≤ p3)
ins(p3 − l1 + 1, c3)

p1 ≤ p2,
p2 < p1 + l1

ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3)

NOOP (p3 < p1 + l1)
ins(p3 − l1, c3) (p1 + l1 ≤ p3)

p2 < p1 ins(p3, c3)
ins(p3 + 1, c3) (p1 < p3)

NOOP (p3 ≤ p1 < p1 + l1)
ins(p3 − l1 + 1, c3) (p1 + l1 ≤ p3)

Comparing this table with the previous one, we see that they are equivalent. Hence (c/a)/(b/a) =
(c/b)/(a\b), i.e. (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 2.

Case 3 a = ins(p1, c1), b = del(p2, l2), c = ins(p3, c3).

We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)
and (â c)̂ (b̂ c) = (a\c)\(b\c). We have

(a\b)\(c/b) = (ins(p1, c1)\del(p2, l2))\(ins(p3, c3)\del(p2, l2)),

(a\c)\(b\c) = (ins(p1, c1)\ins(p3, c3))\(del(p2, l2)/ins(p3, c3)).

Let us first assume that p1 = p3. Then we have

(a\b)\(c/b) =





ins(p1, c1) (p1 < p2)
NOOP (p2 ≤ p1 < p2 + l2)

ins(p1 − l2, c1) (p2 + l2 ≤ p1)





∖





ins(p3, c3) (p3 < p2)
NOOP (p2 ≤ p3 < p2 + l2)

ins(p3 − l2, c3) (p2 + l2 ≤ p3)





=







ins(p1, c1)\ins(p3, c3) (p1 < p2)
NOOP\NOOP (p2 ≤ p1 < p2 + l2)
ins(p1 − l2, c1)\ins(p3 − l2, c3) (p2 + l2 ≤ p1)

=







ins(p1, c1) (p1 < p2)
NOOP (p2 ≤ p1 < p2 + l2)
ins(p1 − l2, c1) (p2 + l2 ≤ p1)

.
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Also,

(a\c)\(b\c) = ins(p1, c1)

∖





del(p2, l2) (p2 + l2 ≤ p3)
del(p2, l2 + 1) (p2 ≤ p3 < p2 + l2)

del(p2 + 1, l2) (p3 < p2)





=







ins(p1, c1)\del(p2, l2) (p2 + l2 ≤ p3)
ins(p1, c1)\del(p2, l2 + 1) (p2 ≤ p3 < p2 + l2)
ins(p1, c1)\del(p2 + 1, l2) (p3 < p2)

=







ins(p1 − l2, c1) (p2 + l2 ≤ p3)
NOOP (p2 ≤ p3 < p2 + l2)
ins(p1, c1) (p3 < p2)

,

and we see that (a\b)\(c/b) = (a\c)\(b\c). Now suppose that p1 6= p3. Then we have

(a\b)\(c/b) = (ins(p1, c1)\del(p2, l2))\(ins(p3, c3)/del(p2, l2))

= (ins(p1, c1)/del(p2, l2))\(ins(p3, c3)/del(p2, l2)),

which by Case 2 (interchange subscripts 1 and 2 and compare with (b/a)\(c/a) = (b\c)/(a\c) in
Case 2) is equal to (ins(p1, c1)\ins(p3, c3))/(del(p2, l2)\ins(p3, c3)). Hence

(a\b)\(c/b) = (ins(p1, c1)\ins(p3, c3))/(del(p2, l2)\ins(p3, c3))

= (ins(p1, c1)\ins(p3, c3))\(del(p2, l2)\ins(p3, c3))

= (a\c)\(b\c).

Hence, (â b)̂ (ĉ b) = (â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)
and (b̂ c)̂ (â c) = (b\c)/(a\c). We have

(b/a)\(c/a) = (del(p2, l2)/ins(p1, c1))\(ins(p3, c3)/ins(p1, c1)),

(b\c)/(a\c) = (del(p2, l2)\ins(p3, c3))/(ins(p1, c1)\ins(p3, c3)).

First assume that p1 = p3. Then we have

(b/a)\(c/a) =





del(p2, l2) (p2 + l2 ≤ p1)
del(p2, l2 + 1) (p2 ≤ p1 < p2 + l2)

del(p2 + 1, l2) (p1 < p2)





∖

ins(p3 + 1, c3)

=







del(p2, l2)\ins(p3 + 1, c3) (p2 + l2 ≤ p1)
del(p2, l2 + 1)\ins(p3 + 1, c3) (p2 ≤ p1 < p2 + l2)
del(p2 + 1, l2)\ins(p3 + 1, c3) (p1 < p2)

=







del(p2, l2) (p2 + l2 ≤ p1)
del(p2, l2 + 2) (p2 ≤ p1 < p2 + l2)
del(p2 + 2, l2) (p1 < p2)

.
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Also,

(b\c)/(a\c) =





del(p2, l2) (p2 + l2 ≤ p3)
del(p2, l2 + 1) (p2 ≤ p3 < p2 + l2)

del(p2 + 1, l2) (p3 < p2)





/

ins(p1, c1)

=







del(p2, l2)/ins(p1, c1) (p2 + l2 ≤ p3)
del(p2, l2 + 1)/ins(p1, c1) (p2 ≤ p3 < p2 + l2)
del(p2 + 1, l2)/ins(p1, c1) (p3 < p2)

=







del(p2, l2) (p2 + l2 ≤ p3)
del(p2, l2 + 2) (p2 ≤ p3 < p2 + l2)
del(p2 + 2, l2) (p3 < p2)

,

and we see that (b/a)\(c/a) = (b\c)/(a\c). Now suppose that p1 6= p3. Then we have

(b/a)\(c/a) = (del(p2, l2)/ins(p1, c1))\(ins(p3, c3)/ins(p1, c1))

= (del(p2, l2)\ins(p1, c1))\(ins(p3, c3)/ins(p1, c1)),

which by Case 2 (interchange subscripts 1 and 2 and compare with (a\b)\(c/b) = (a\c)\(b\c) in
Case 2) is equal to (del(p2, l2)\ins(p3, c3))\(ins(p1, c1)\ins(p3, c3)). Hence

(b/a)\(c/a) = (del(p2, l2)\ins(p3, c3))\(ins(p1, c1)\ins(p3, c3))

= (del(p2, l2)\ins(p3, c3))/(ins(p1, c1)\ins(p3, c3))

= (b\c)/(a\c).

Hence, (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c).

(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)
and (ĉ b)̂ (â b) = (c/b)/(a\b). We have

(c/a)/(b/a) = (ins(p3, c3)/ins(p1, c1))/(del(p2, l2)/ins(p1, c1)),

(c/b)/(a\b) = (ins(p3, c3)/del(p2, l2))/(ins(p1, c1)\del(p2, l2)).

First assume that p1 = p3. Then we have

(c/a)/(b/a) = ins(p3 + 1, c3)

/





del(p2, l2) (p2 + l2 ≤ p1)
del(p2, l2 + 1) (p2 ≤ p1 < p2 + l2)

del(p2 + 1, l2) (p1 < p2)





=







ins(p3 + 1, c3)/del(p2, l2) (p2 + l2 ≤ p1)
ins(p3 + 1, c3)/del(p2, l2 + 1) (p2 ≤ p1 < p2 + l2)
ins(p3 + 1, c3)/del(p2 + 1, l2) (p1 < p2)

=







ins(p3 − l2 + 1, c3) (p2 + l2 ≤ p1)
NOOP (p2 ≤ p1 < p2 + l2)
ins(p3 + 1, c3) (p1 < p2)

.



APPENDIX A. VERIFICATION OF TP2 FOR TEXT BUFFER OPERATIONS 100

Also,

(c/b)/(a\b) =





ins(p3, c3) (p3 < p2)
NOOP (p2 ≤ p3 < p2 + l2)

ins(p3 − l2, c3) (p2 + l2 ≤ p3)





/





ins(p1, c1) (p1 < p2)
NOOP (p2 ≤ p1 < p2 + l2)

ins(p1 − l2, c1) (p2 + l2 ≤ p1)





=







ins(p3, c3)/ins(p1, c1) (p1 < p2)
NOOP/NOOP (p2 ≤ p1 < p2 + l2)
ins(p3 − l2, c3)/ins(p1 − l2, c1) (p2 + l2 ≤ p1)

=







ins(p3 + 1, c3) (p1 < p2)
NOOP (p2 ≤ p1 < p2 + l2)
ins(p3 − l2 + 1, c3) (p2 + l2 ≤ p1)

,

and we see that (c/a)/(b/a) = (c/b)/(a\b). Now suppose p1 6= p3. Then

(c/a)/(b/a) = (ins(p3, c3)/ins(p1, c1))/(del(p2, l2)/ins(p1, c1))

= (ins(p3, c3)/ins(p1, c1))/(del(p2, l2)\ins(p1, c1)),

which by Case 2 (interchange subscripts 1 and 2 and compare with (c/b)/(a\b) = (c/a)/(b/a) in
Case 2) is equal to (ins(p3, c3)/del(p2, l2))/(ins(p1, c1)/del(p2, l2)). Hence

(c/a)/(b/a) = (ins(p3, c3)/del(p2, l2))/(ins(p1, c1)/del(p2, l2))

= (ins(p3, c3)/del(p2, l2))/(ins(p1, c1)\del(p2, l2))

= (c/b)/(a\b).

Hence, (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 3.

Case 4 a = ins(p1, c1), b = ins(p2, c2), c = del(p3, l3).

We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)
and (â c)̂ (b̂ c) = (a\c)\(b\c). We have

(a\b)\(c/b) = (ins(p1, c1)\ins(p2, c2))\(del(p3, l3)/ins(p2, c2)),

(a\c)\(b\c) = (ins(p1, c1)\del(p3, l3))\(ins(p2, c2)\del(p3, l3)).

First assume that p1 = p2. Then we have

(a\b)\(c/b) = ins(p1, c1)

∖





del(p3, l3) (p3 + l3 ≤ p2)
del(p3, l3 + 1) (p3 ≤ p2 < p3 + l3)

del(p3 + 1, l3) (p2 < p3)
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=







ins(p1, c1)\del(p3, l3) (p3 + l3 ≤ p2)
ins(p1, c1)\del(p3, l3 + 1) (p3 ≤ p2 < p3 + l3)
ins(p1, c1)\del(p3 + 1, l3) (p2 < p3)

=







ins(p1 − l3, c1) (p3 + l3 ≤ p2)
NOOP (p3 ≤ p2 < p3 + l3)
ins(p1, c1) (p2 < p3)

.

Also,

(a\c)\(b\c) =





ins(p1, c1) (p1 < p3)
NOOP (p3 ≤ p1 < p3 + l3)

ins(p1 − l3, c1) (p3 + l3 ≤ p1)





∖





ins(p2, c2) (p2 < p3)
NOOP (p3 ≤ p2 < p3 + l3)

ins(p2 − l3, c2) (p3 + l3 ≤ p2)





=







ins(p1, c1)\ins(p2, c2) (p1 < p3)
NOOP\NOOP (p3 ≤ p1 < p3 + l3)
ins(p1 − l3, c1)\ins(p2 − l3, c2) (p3 + l3 ≤ p1)

=







ins(p1, c1) (p1 < p3)
NOOP (p3 ≤ p1 < p3 + l3)
ins(p1 − l3, c1) (p3 + l3 ≤ p1)

,

and we see that (a\b)\(c/b) = (a\c)\(b\c). Now suppose that p1 6= p2. Then we have

(a\b)\(c/b) = (ins(p1, c1)\ins(p2, c2))\(del(p3, l3)/ins(p2, c2))

= (ins(p1, c1)/ins(p2, c2))/(del(p3, l3)\ins(p2, c2)),

which by Case 2 (interchange subscripts 1 and 3 and compare with (c/b)/(a\b) = (c/a)/(b/a) in
Case 2) is equal to (ins(p1, c1)/del(p3, l3))/(ins(p2, c2)/del(p3, l3)). Hence,

(a\b)\(c/b) = (ins(p1, c1)/del(p3, l3))/(ins(p2, c2)/del(p3, l3))

= (ins(p1, c1)\del(p3, l3))\(ins(p2, c2)\del(p3, l3))

= (a\c)\(b\c).

Thus, (â b)̂ (ĉ b) = (â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)
and (b̂ c)̂ (â c) = (b\c)/(a\c). We have

(b/a)\(c/a) = (ins(p2, c2)/ins(p1, c1))\(del(p3, l3)/ins(p1, c1)),

(b\c)/(a\c) = (ins(p2, c2)\del(p3, l3))/(ins(p1, c1)\del(p3, l3)).

First assume that p1 = p2. Then we have

(b/a)\(c/a) = ins(p2 + 1, c2)

∖





del(p3, l3) (p3 + l3 ≤ p1)
del(p3, l3 + 1) (p3 ≤ p1 < p3 + l3)

del(p3 + 1, l3) (p1 < p3)
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=







ins(p2 + 1, c2)\del(p3, l3) (p3 + l3 ≤ p1)
ins(p2 + 1, c2)\del(p3, l3 + 1) (p3 ≤ p1 < p3 + l3)
ins(p2 + 1, c2)\del(p3 + 1, l3) (p1 < p3)

=







ins(p2 − l3 + 1, c2) (p3 + l3 ≤ p1)
NOOP (p3 ≤ p1 < p3 + l3)
ins(p2 + 1, c2) (p1 < p3)

.

Also,

(b\c)/(a\c) =





ins(p2, c2) (p2 < p3)
NOOP (p3 ≤ p2 < p3 + l3)

ins(p2 − l3, c2) (p3 + l3 ≤ p2)





/





ins(p1, c1) (p1 < p3)
NOOP (p3 ≤ p1 < p3 + l3)

ins(p1 − l3, c1) (p3 + l3 ≤ p1)





=







ins(p2, c2)/ins(p1, c1) (p2 < p3)
NOOP/NOOP (p3 ≤ p2 < p3 + l3)
ins(p2 − l3, c2)/ins(p1 − l3, c1) (p3 + l3 ≤ p2)

=







ins(p2 + 1, c2) (p2 < p3)
NOOP (p3 ≤ p2 < p3 + l3)
ins(p2 − l3 + 1, c2) (p3 + l3 ≤ p2)

,

and we see that (b/a)\(c/a) = (b\c)/(a\c). Now suppose that p1 6= p2. Then

(b/a)\(c/a) = (ins(p2, c2)/ins(p1, c1))\(del(p3, l3)/ins(p1, c1))

= (ins(p2, c2)\ins(p1, c1))/(del(p3, l3)\ins(p1, c1)),

which by Case 2 (interchange subscripts 1 and 3 and compare with (b\c)/(a\c) = (b/a)\(c/a) in
Case 2) is equal to (ins(p2, c2)/del(p3, l3))\(ins(p1, c1)/del(p3, l3)). Hence,

(b/a)\(c/a) = (ins(p2, c2)/del(p3, l3))\(ins(p1, c1)/del(p3, l3))

= (ins(p2, c2)\del(p3, l3))/(ins(p1, c1)\del(p3, l3))

= (b\c)/(a\c)

Thus, (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c).

(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)
and (ĉ b)̂ (â b) = (c/b)/(a\b). We have

(c/a)/(b/a) = (del(p3, l3)/ins(p1, c1))/(ins(p2, c2)/ins(p1, c1)),

(c/b)/(a\b) = (del(p3, l3)/ins(p2, c2))/(ins(p1, c1)\ins(p2, c2)).

First assume that p1 = p2. Then we have

(c/a)/(b/a) =





del(p3, l3) (p3 + l3 ≤ p1)
del(p3, l3 + 1) (p3 ≤ p1 < p3 + l3)

del(p3 + 1, l3) (p1 < p3)





/

ins(p2 + 1, c2)
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=







del(p3, l3)/ins(p2 + 1, c2) (p3 + l3 ≤ p1)
del(p3, l3 + 1)/ins(p2 + 1, c2) (p3 ≤ p1 < p3 + l3)
del(p3 + 1, l3)/ins(p2 + 1, c2) (p1 < p3)

=







del(p3, l3) (p3 + l3 ≤ p1)
del(p3, l3 + 2) (p3 ≤ p1 < p3 + l3)
del(p3 + 2, l3) (p1 < p3)

.

Also,

(c/b)/(a\b) =





del(p3, l3) (p3 + l3 ≤ p2)
del(p3, l3 + 1) (p3 ≤ p2 < p3 + l3)

del(p3 + 1, l3) (p2 < p3)





/

ins(p1, c1)

=







del(p3, l3)/ins(p1, c1) (p3 + l3 ≤ p2)
del(p3, l3 + 1)/ins(p1, c1) (p3 ≤ p2 < p3 + l3)
del(p3 + 1, l3)/ins(p1, c1) (p2 < p3)

=







del(p3, l3) (p3 + l3 ≤ p2)
del(p3, l3 + 2) (p3 ≤ p2 < p3 + l3)
del(p3 + 2, l3) (p2 < p3)

,

and we see that (c/a)/(b/a) = (c/b)/(a\b). Now suppose that p1 6= p2. Then we have

(c/a)/(b/a) = (del(p3, l3)/ins(p1, c1))/(ins(p2, c2)/ins(p1, c1))

= (del(p3, l3)\ins(p1, c1))\(ins(p2, c2)\ins(p1, c1)),

which by Case 2 (interchange subscriptes 1 and 3 and compare with (a\c)\(b\c) = (a\b)\(c/b) in
Case 2) is equal to (del(p3, l3)\ins(p2, c2))\(ins(p1, c1)/ins(p2, c2). Hence,

(c/a)/(b/a) = (del(p3, l3)\ins(p2, c2))\(ins(p1, c1)/ins(p2, c2)

= (del(p3, l3)/ins(p2, c2))/(ins(p1, c1)\ins(p2, c2)

= (c/b)/(a\b).

Thus, (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 4.

Case 5 a = del(p1, l1), b = del(p2, l2), c = ins(p3, c3).

We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)
and (â c)̂ (b̂ c) = (a\b)\(c\b). We have

(a\b)\(c/b) = (del(p1, l1)\del(p2, l2))\(ins(p3, c3)/del(p2, l2))
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=











































del(p1, l1)
(p1 + l1 ≤ p2)

del(p1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2)

del(p1, l1 − l2)
(p1 ≤ p2 ≤ p2 + l2 ≤ p1 + l1)

NOOP
(p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2)

del(p2, p1 + l1 − p2 − l2)
(p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1)

del(p1 − l2, l1)
(p2 + l2 ≤ p1)











































∖





ins(p3, c3) (p3 < p2)
NOOP (p2 ≤ p3 < p2 + l2)

ins(p3 − l2, c3) (p3 ≤ p2 + l2)



 ,

which evaluates as follows:

p3 < p2 p2 ≤ p3 < p2 + l2 p2 + l2 ≤ p3

p1 + l1 ≤ p2 del(p1, l1)\ins(p3, c3) del(p1, l1)\NOOP
del(p1, l1)

\ins(p3 − l2, c3)

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

del(p1, p2 − p1)\ins(p3, c3) del(p1, p2 − p1)\NOOP
del(p1, p2 − p1)
\ins(p3 − l2, c3)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

del(p1, l1 − l2)\ins(p3, c3) del(p1, l1 − l2)\NOOP
del(p1, l1 − l2)
\ins(p3 − l2, c3)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

NOOP\ins(p3, c3) NOOP\NOOP NOOP\ins(p3 − l2, c3)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

del(p2, p1 + l1 − p2

−l2)\ins(p3, c3)
del(p2, p1 + l1 − p2

−l2)\NOOP
del(p2, p1 + l1 − p2

−l2)\ins(p3 − l2, c3)

p2 + l2 ≤ p1 del(p1 − l2, l1)\ins(p3, c3) del(p1 − l2, l1)\NOOP
del(p1 − l2, l1)
\ins(p3 − l2, c3)
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=

p3 < p2

p2 ≤ p3,
p3 < p2 + l2

p2 + l2 ≤ p3

p1 + l1 ≤ p2

del(p1, l1)
(p1 + l1 ≤ p3)

del(p1, l1 + 1)
(p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1)
(p3 < p1)

del(p1, l1)

del(p1, l1)
(p1 + l1 ≤ p3 − l2)

del(p1, l1 + 1)
(p1 ≤ p3 − l2 < p1 + l1)

del(p1 + 1, l1)
(p3 − l2 < p1)

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

del(p1, p2 − p1)
(p2 ≤ p3)

del(p1, p2 − p1 + 1)
(p1 ≤ p3 < p2)

del(p1 + 1, p2 − p1)
(p3 < p1)

del(p1, p2 − p1)

del(p1, p2 − p1)
(p2 ≤ p3 − l2)

del(p1, p2 − p1 + 1)
(p1 ≤ p3 − l2 < p2)

del(p1 + 1, p2 − p1)
(p3 − l2 < p1)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

del(p1, l1 − l2)
(p1 + l1 − l2 ≤ p3)

del(p1, l1 − l2 + 1)
(p1 ≤ p3 <

p1 + l1 − l2)
del(p1 + 1, l1 − l2)

(p3 < p1)

del(p1, l1 − l2)

del(p1, l1 − l2)
(p1 + l1 − l2 ≤ p3 − l2)

del(p1, l1 − l2 + 1)
(p1 ≤ p3 − l2 <

p1 + l1 − l2)
del(p1 + 1, l1 − l2)

(p3 − l2 < p1)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

NOOP NOOP NOOP

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

del(p2, p1 + l1 − p2 − l2)
(p1 + l1 − l2 ≤ p3)

del(p2, p1 + l1 − p2

−l2 + 1) (p2 ≤ p3 <
p1 + l1 − l2)

del(p2 + 1, p1 + l1
−p2 − l2) (p3 < p2)

del(p2, p1 + l1
−p2 − l2)

del(p2, p1 + l1 − p2 − l2)
(p1 + l1 − l2 ≤ p3 − l2)

del(p2, p1 + l1 − p2 − l2 + 1)
(p2 ≤ p3 − l2 <

p1 + l1 − l2)
del(p2 + 1, p1 + l1 − p2 − l2)

(p3 − l2 < p2)

p2 + l2 ≤ p1

del(p1 − l2, l1)
(p1 − l2 + l1 ≤ p3)

del(p1 − l2, l1 + 1)
(p1 − l2 ≤ p3 <

p1 − l2 + l1)
del(p1 − l2 + 1, l1)

(p3 < p1 − l2)

del(p1 − l2, l1)

del(p1 − l2, l1)
(p1 − l2 + l1 ≤ p3 − l2)

del(p1 − l2, l1 + 1)
(p1 − l2 ≤ p3 − l2 <

p1 − l2 + l1)
del(p1 − l2 + 1, l1)

(p3 − l2 < p1 − l2)
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=

p3 < p2

p2 ≤ p3,
p3 < p2 + l2

p2 + l2 ≤ p3

p1 + l1 ≤ p2

del(p1, l1)
(p1 + l1 ≤ p3)

del(p1, l1 + 1)
(p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1)
(p3 < p1)

del(p1, l1) del(p1, l1)

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

del(p1, p2 − p1 + 1)
(p1 ≤ p3)

del(p1 + 1, p2 − p1)
(p3 < p1)

del(p1, p2 − p1) del(p1, p2 − p1)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

del(p1, l1 − l2 + 1)
(p1 ≤ p3)

del(p1 + 1, l1 − l2)
(p3 < p1)

del(p1, l1 − l2)

del(p1, l1 − l2)
(p1 + l1 ≤ p3)

del(p1, l1 − l2 + 1)
(p3 < p1 + l1)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

NOOP NOOP NOOP

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

del(p2 + 1,
p1 + l1 − p2 − l2)

del(p2, p1 + l1
−p2 − l2)

del(p2, p1 + l1 − p2 − l2)
(p1 + l1 ≤ p3)

del(p2, p1 + l1 − p2 − l2 + 1)
(p3 < p1 + l1)

p2 + l2 ≤ p1 del(p1 − l2 + 1, l1) del(p1 − l2, l1)

del(p1 − l2, l1)
(p1 + l1 ≤ p3)

del(p1 − l2, l1 + 1)
(p1 ≤ p3 < p1 + l1)

del(p1 − l2 + 1, l1)
(p3 < p1)

Also,

(a\c)\(b\c) = (del(p1, l1)\ins(p3, c3))\(del(p2, l2)\ins(p3, c3))

=







del(p1, l1) (p1 + l1 ≤ p3)

del(p1, l1 + 1) (p1 ≤ p3 < p1 + l1)

del(p1 + 1, l1) (p3 < p1)







∖







del(p2, l2) (p2 + l2 ≤ p3)

del(p2, l2 + 1) (p2 ≤ p3 < p2 + l2)

del(p2 + 1, l2) (p3 < p2)






,

which evaluates as follows:

p2 + l2 ≤ p3 p2 ≤ p3 < p2 + l2 p3 < p2

p1 + l1 ≤ p3 del(p1, l1)\del(p2, l2) del(p1, l1)\del(p2, l2 + 1) del(p1, l1)\del(p2 + 1, l2)

p1 ≤ p3

< p1 + l1
del(p1, l1 + 1)\del(p2, l2) del(p1, l1 + 1)\del(p2, l2 + 1) del(p1, l1 + 1)\del(p2 + 1, l2)

p3 < p1 del(p1 + 1, l1)\del(p2, l2) del(p1 + 1, l1)\del(p2, l2 + 1) del(p1 + 1, l1)\del(p2 + 1, l2)
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=

p2 + l2 ≤ p3 p2 ≤ p3 < p2 + l2 p3 < p2

p1 + l1 ≤ p3

del(p1, l1) (p1 + l1 ≤ p2)
del(p1, p2 − p1)

(p1 ≤ p2 ≤ p1 + l1
≤ p2 + l2)

del(p1, l1 − l2)
(p1 ≤ p2 ≤ p2 + l2

≤ p1 + l1)
NOOP

(p2 ≤ p1 ≤ p1 + l1
≤ p2 + l2)

del(p2, p1 + l1 − p2 − l2)
(p2 ≤ p1 ≤ p2 + l2

≤ p1 + l1)
del(p1 − l2, l1)

(p2 + l2 ≤ p1)

del(p1, l1) (p1 + l1 ≤ p2)
del(p1, p2 − p1)

(p1 ≤ p2 ≤ p1 + l1
≤ p2 + l2 + 1)

del(p1, l1 − l2 − 1)
(p1 ≤ p2 ≤ p2 + l2 + 1

≤ p1 + l1)
NOOP

(p2 ≤ p1 ≤ p1 + l1
≤ p2 + l2 + 1)

del(p2,
p1 + l1 − p2 − l2 − 1)
(p2 ≤ p1 ≤ p2 + l2 + 1

≤ p1 + l1)
del(p1 − l2 − 1, l1)

(p2 + l2 + 1 ≤ p1)

del(p1, l1) (p1 + l1 ≤ p2 + 1)
del(p1, p2 − p1 + 1)

(p1 ≤ p2 + 1 ≤ p1 + l1
≤ p2 + l2 + 1)

del(p1, l1 − l2)
(p1 ≤ p2 + 1 ≤ p2 + l2

≤ p1 + l1 + 1)
NOOP

(p2 + 1 ≤ p1 ≤ p1 + l1
≤ p2 + l2 + 1)

del(p2 + 1,
p1 + l1 − p2 − l2 − 1)
(p2 ≤ p1 − 1 ≤ p2 + l2

≤ p1 + l1 − 1)
del(p1 − l2, l1)

(p2 + l2 + 1 ≤ p1)

p1 ≤ p3

< p1 + l1

del(p1, l1 + 1)
(p1 + l1 + 1 ≤ p2)

del(p1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1 + 1

≤ p2 + l2)
del(p1, l1 − l2 + 1)

(p1 ≤ p2 ≤ p2 + l2
≤ p1 + l1 + 1)

NOOP
(p2 ≤ p1 ≤ p1 + l1 + 1

≤ p2 + l2)
del(p2,

p1 + l1 − p2 − l2 + 1)
(p2 ≤ p1 ≤ p2 + l2

≤ p1 + l1 + 1)
del(p1 − l2, l1 + 1)

(p2 + l2 ≤ p1)

del(p1, l1 + 1)
(p1 + l1 + 1 ≤ p2)

del(p1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1 + 1

≤ p2 + l2 + 1)
del(p1, l1 − l2)

(p1 ≤ p2 ≤ p2 + l2 + 1
≤ p1 + l1 + 1)

NOOP
(p2 ≤ p1 ≤ p1 + l1 + 1

≤ p2 + l2 + 1)
del(p2, p1 + l1 − p2 − l2)

(p2 ≤ p1 ≤ p2 + l2 + 1
≤ p1 + l1 + 1)

del(p1 − l2 − 1, l1 + 1)
(p2 + l2 + 1 ≤ p1)

del(p1, l1 + 1)
(p1 + l1 ≤ p2)

del(p1, p2 + 1 − p1)
(p1 − 1 ≤ p2 ≤ p1 + l1

≤ p2 + l2)
del(p1, l1 − l2 + 1)

(p1 − 1 ≤ p2 ≤ p2 + l2
≤ p1 + l1)

NOOP
(p2 ≤ p1 − 1 ≤ p1 + l1

≤ p2 + l2)
del(p2 + 1,

p1 + l1 − p2 − l2)
(p2 ≤ p1 − 1 ≤ p2 + l2

≤ p1 + l1)
del(p1 − l2, l1 + 1)

(p2 + l2 + 1 ≤ p1)

p3 < p1

del(p1 + 1, l1)
(p1 + l1 + 1 ≤ p2)

del(p1 + 1, p2 − p1 − 1)
(p1 ≤ p2 − 1 ≤ p1 + l1

≤ p2 + l2 − 1)
del(p1 + 1, l1 − l2)

(p1 + 1 ≤ p2 ≤ p2 + l2
≤ p1 + l1 + 1)

NOOP (p2 ≤ p1 + 1
≤ p1 + l1 + 1 ≤ p2 + l2)

del(p2, p1 + l1 + 1 − p2 − l2)
(p2 ≤ p1 + 1 ≤ p2 + l2

≤ p1 + l1 + 1)
del(p1 − l2 + 1, l1)

(p2 + l2 ≤ p1 + 1)

del(p1 + 1, l1)
(p1 + l1 + 1 ≤ p2)

del(p1 + 1, p2 − p1 − 1)
(p1 ≤ p2 − 1 ≤ p1 + l1

≤ p2 + l2)
del(p1 + 1, l1 − l2 − 1)

(p1 ≤ p2 − 1 ≤ p2 + l2
≤ p1 + l1)

NOOP (p2 − 1 ≤ p1

≤ p1 + l1 ≤ p2 + l2)
del(p2, p1 + l1 − p2 − l2)

(p2 − 1 ≤ p1 ≤ p2 + l2
≤ p1 + l1)

del(p1 − l2, l1)
(p2 + l2 + 1 ≤ p1 + 1)

del(p1 + 1, l1) (p1 + l1 ≤ p2)
del(p1 + 1, p2 − p1)

(p1 ≤ p2 ≤ p1 + l1
≤ p2 + l2)

del(p1 + 1, l1 − l2)
(p1 ≤ p2 ≤ p2 + l2

≤ p1 + l1)
NOOP (p2 ≤ p1

≤ p1 + l1 ≤ p2 + l2)
del(p2 + 1,

p1 + l1 − p2 − l2)
(p2 ≤ p1 ≤ p2 + l2

≤ p1 + l1)
del(p1 − l2 + 1, l1)

(p2 + l2 ≤ p1)
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=

p2 + l2 ≤ p3 p2 ≤ p3 < p2 + l2 p3 < p2

p1 + l1 ≤ p3

del(p1, l1)
(p1 + l1 ≤ p2)

del(p1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1

≤ p2 + l2)
del(p1, l1 − l2)

(p1 ≤ p2 ≤ p2 + l2
≤ p1 + l1)

NOOP (p2 ≤ p1

≤ p1 + l1 ≤ p2 + l2)
del(p2, p1 + l1 − p2 − l2)

(p2 ≤ p1 ≤ p2 + l2
≤ p1 + l1)

del(p1 − l2, l1)
(p2 + l2 ≤ p1)

del(p1, l1)
(p1 + l1 ≤ p2)

del(p1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1)

NOOP (p2 ≤ p1)

del(p1, l1)

p1 ≤ p3

< p1 + l1

del(p1, l1 − l2 + 1)
(p1 ≤ p2)

del(p2,
p1 + l1 − p2 − l2 + 1)

(p2 ≤ p1 ≤ p2 + l2)
del(p1 − l2, l1 + 1)

(p2 + l2 ≤ p1)

del(p1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1 + 1

≤ p2 + l2 + 1)
del(p1, l1 − l2)

(p1 ≤ p2 ≤ p2 + l2 + 1
≤ p1 + l1 + 1)

NOOP
(p2 ≤ p1 ≤ p1 + l1 + 1

≤ p2 + l2 + 1)
del(p2, p1 + l1 − p2 − l2)

(p2 ≤ p1 ≤ p2 + l2 + 1
≤ p1 + l1 + 1)

del(p1, l1 + 1)
(p1 + l1 ≤ p2)

del(p1, p2 + 1 − p1)
(p2 ≤ p1 + l1

≤ p2 + l2)
del(p1, l1 − l2 + 1)

(p2 + l2 ≤ p1 + l1)

p3 < p1 del(p1 − l2 + 1, l1)

NOOP
(p1 + l1 ≤ p2 + l2)

del(p2, p1 + l1 − p2 − l2)
(p1 ≤ p2 + l2

≤ p1 + l1)
del(p1 − l2, l1)

(p2 + l2 ≤ p1)

del(p1 + 1, l1)
(p1 + l1 ≤ p2)

del(p1 + 1, p2 − p1)
(p1 ≤ p2 ≤ p1 + l1

≤ p2 + l2)
del(p1 + 1, l1 − l2)

(p1 ≤ p2 ≤ p2 + l2
≤ p1 + l1)

NOOP
(p2 ≤ p1 ≤ p1 + l1

≤ p2 + l2)
del(p2 + 1,

p1 + l1 − p2 − l2)
(p2 ≤ p1 ≤ p2 + l2

≤ p1 + l1)
del(p1 − l2 + 1, l1)

(p2 + l2 ≤ p1)

.

Comparing this table with the previous one, we see that they are equivalent. Hence, (â b)̂ (ĉ b) =

(â c)̂ (b̂ c).
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(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)

and (b̂ c)̂ (â c) = (b\c)/(a\c). We have

(b/a)\(c/a) = (del(p2, l2)/del(p1, l1))\(ins(p3, c3)/del(p1, l1))

= (del(p2, l2)\del(p1, l1))\(ins(p3, c3)/del(p1, l1)),

which is the expression for (a\b)\(c/b), with subscripts 1 and 2 interchanged. Hence, the table

for (b/a)\(c/a) is as follows:

p3 < p1

p1 ≤ p3,

p3 < p1 + l1
p1 + l1 ≤ p3

p2 + l2 ≤ p1

del(p2, l2)

(p2 + l2 ≤ p3)

del(p2, l2 + 1)

(p2 ≤ p3 < p2 + l2)

del(p2 + 1, l2)

(p3 < p2)

del(p2, l2) del(p2, l2)

p2 ≤ p1 ≤

p2 + l2 ≤ p1 + l1

del(p2, p1 − p2 + 1)

(p2 ≤ p3)

del(p2 + 1, p1 − p2)

(p3 < p2)

del(p2, p1 − p2) del(p2, p1 − p2)

p2 ≤ p1 ≤

p1 + l1 ≤ p2 + l2

del(p2, l2 − l1 + 1)

(p2 ≤ p3)

del(p2 + 1, l2 − l1)

(p3 < p2)

del(p2, l2 − l1)

del(p2, l2 − l1)

(p2 + l2 ≤ p3)

del(p2, l2 − l1 + 1)

(p3 < p2 + l2)

p1 ≤ p2 ≤

p2 + l2 ≤ p1 + l1
NOOP NOOP NOOP

p1 ≤ p2 ≤

p2 + l2 ≤ p1 + l1

del(p1 + 1,

p2 + l2 − p1 − l1)

del(p1, p2 + l2

−p1 − l1)

del(p1, p2 + l2 − p1 − l1)

(p2 + l2 ≤ p3)

del(p1, p2 + l2 − p1 − l1 + 1)

(p3 < p2 + l2)

p1 + l1 ≤ p2 del(p2 − l1 + 1, l2) del(p2 − l1, l2)

del(p2 − l1, l2)

(p2 + l2 ≤ p3)

del(p2 − l1, l2 + 1)

(p2 ≤ p3 < p2 + l2)

del(p2 − l1 + 1, l2)

(p3 < p2)
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Also,

(b\c)/(a\c) = (del(p2, l2)\ins(p3, c3))/(del(p1, l1)\ins(p3, c3))

= (del(p2, l2)\ins(p3, c3))\(del(p1, l1)\ins(p3, c3)),

which is exactly the expression for (a\c)\(b\c), with subscripts 1 and 2 interchanged. Thus, the

table for (b\c)/(a\c) is as follows:
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p1 + l1 ≤ p3 p1 ≤ p3 < p1 + l1 p3 < p1

p2 + l2 ≤ p3

del(p2, l2) (p2 + l2 ≤ p1)

del(p2, p1 − p2)

(p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1)

del(p2, l2 − l1)

(p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2)

NOOP (p1 ≤ p2

≤ p2 + l2 ≤ p1 + l1)

del(p1, p2 + l2 − p1 − l1)

(p1 ≤ p2 ≤ p1 + l1

≤ p2 + l2)

del(p2 − l1, l2) (p1 + l1 ≤ p2)

del(p2, l2)

(p2 + l2 ≤ p1)

del(p2, p1 − p2)

(p2 ≤ p1 ≤ p2 + l2)

NOOP (p1 ≤ p2)

del(p2, l2)

p2 ≤ p3

< p2 + l2

del(p2, l2 − l1 + 1)

(p2 ≤ p1)

del(p1,

p2 + l2 − p1 − l1 + 1)

(p1 ≤ p2 ≤ p1 + l1)

del(p2 − l1, l2 + 1)

(p1 + l1 ≤ p2)

del(p2, p1 − p2)

(p2 ≤ p1 ≤ p2 + l2 + 1

≤ p1 + l1 + 1)

del(p2, l2 − l1)

(p2 ≤ p1 ≤ p1 + l1 + 1

≤ p2 + l2 + 1)

NOOP

(p1 ≤ p2 ≤ p2 + l2 + 1

≤ p1 + l1 + 1)

del(p1, p2 + l2 − p1 − l1)

(p1 ≤ p2 ≤ p1 + l1 + 1

≤ p2 + l2 + 1)

del(p2, l2 + 1)

(p2 + l2 ≤ p1)

del(p2, p1 + 1 − p2)

(p1 ≤ p2 + l2

≤ p1 + l1)

del(p2, l2 − l1 + 1)

(p1 + l1 ≤ p2 + l2)

p3 < p2 del(p2 − l1 + 1, l2)

NOOP

(p2 + l2 ≤ p1 + l1)

del(p1, p2 + l2 − p1 − l1)

(p2 ≤ p1 + l1

≤ p2 + l2)

del(p2 − l1, l2)

(p1 + l1 ≤ p2)

del(p2 + 1, l2)

(p2 + l2 ≤ p1)

del(p2 + 1, p1 − p2)

(p2 ≤ p1 ≤ p2 + l2

≤ p1 + l1)

del(p2 + 1, l2 − l1)

(p2 ≤ p1 ≤ p1 + l1

≤ p2 + l2)

NOOP

(p1 ≤ p2 ≤ p2 + l2

≤ p1 + l1)

del(p1 + 1,

p2 + l2 − p1 − l1)

(p1 ≤ p2 ≤ p1 + l1

≤ p2 + l2)

del(p2 − l1 + 1, l2)

(p1 + l1 ≤ p2)
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Comparing this table with the previous one, we see that they are equivalent. Hence, (b̂ a)̂ (ĉ a) =

(b̂ c)̂ (â c).

(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)

and (ĉ b)̂ (â b) = (c/b)/(a\b). We have

(c/a)/(b/a) = (ins(p3, c3)/del(p1, l1))/(del(p2, l2)/del(p1, l1))

=







ins(p3, c3) (p3 < p1)

NOOP (p1 ≤ p3 < p1 + l1)

ins(p3 − l1, c3) (p1 + l1 ≤ p3)







/











































del(p2, l2) (p2 + l2 ≤ p1)

del(p2, p1 − p2)

(p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1)

del(p2, l2 − l1)

(p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2)

NOOP

(p1 ≤ p2 ≤ p2 + l2 ≤ p1 + l1)

del(p1, p2 + l2 − p1 − l1)

(p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2)

del(p2 − l1, l2) (p1 + l1 ≤ p2)











































,

which evaluates as follows:

p3 < p1 p1 ≤ p3 < p1 + l1 p1 + l1 ≤ p3

p2 + l2 ≤ p1 ins(p3, c3)/del(p2, l2) NOOP/del(p2, l2) ins(p3 − l1, c3)/del(p2, l2)

p2 ≤ p1 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3)/
del(p2, p1 − p2)

NOOP/del(p2, p1 − p2)
ins(p3 − l1, c3)/

del(p2, p1 − p2)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3)/del(p2, l2 − l1) NOOP/del(p2, l2 − l1)
ins(p3 − l1, c3)/

del(p2, l2 − l1)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3)/NOOP NOOP/NOOP ins(p3 − l1, c3)/NOOP

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3)/del(p1,
p2 + l2 − p1 − l1)

NOOP/del(p1,
p2 + l2 − p1 − l1)

ins(p3 − l1, c3)/del(p1,
p2 + l2 − p1 − l1)

p1 + l1 ≤ p2 ins(p3, c3)/del(p2 − l1, l2) NOOP/del(p2 − l1, l2)
ins(p3 − l1, c3)/

del(p2 − l1, l2)
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=

p3 < p1

p1 ≤ p3 <
p1 + l1

p1 + l1 ≤ p3

p2 + l2 ≤ p1

ins(p3, c3) (p3 < p2)
NOOP

(p2 ≤ p3 < p2 + l2)
ins(p3 − l2, c3)

(p2 + l2 ≤ p3)

NOOP

ins(p3 − l1, c3) (p3 − l1 < p2)
NOOP

(p2 ≤ p3 − l1 < p2 + l2)
ins(p3 − l1 − l2, c3)

(p2 + l2 ≤ p3 − l1)

p2 ≤ p1 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3) (p3 < p2)
NOOP (p2 ≤ p3 < p1)
ins(p3 − p1 + p2, c3)

(p1 ≤ p3)

NOOP

ins(p3 − l1, c3) (p3 − l1 < p2)
NOOP (p2 ≤ p3 − l1 < p1)
ins(p3 − l1 − p1 + p2, c3)

(p1 ≤ p3 − l1)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3) (p3 < p2)
NOOP

(p2 ≤ p3 < p2 + l2 − l1)
ins(p3 − l2 + l1, c3)

(p2 + l2 − l1 ≤ p3)

NOOP

ins(p3 − l1, c3) (p3 − l1 < p2)
NOOP

(p2 ≤ p3 − l1 < p2 + l2 − l1)
ins(p3 − l2, c3)

(p2 + l2 − l1 ≤ p3 − l1)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3) NOOP ins(p3 − l1, c3)

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3) (p3 < p1)
NOOP

(p1 ≤ p3 < p2 + l2 − l1)
ins(p3 − p2 − l2 + p1 + l1, c3)

(p2 + l2 − l1 ≤ p3)

NOOP

ins(p3 − l1, c3) (p3 − l1 < p1)
NOOP

(p1 ≤ p3 − l1 < p2 + l2 − l1)
ins(p3 − p2 − l2 + p1, c3)

(p2 + l2 − l1 ≤ p3 − l1)

p1 + l1 ≤ p2

ins(p3, c3) (p3 < p2 − l1)
NOOP (p2 − l1 ≤ p3

< p2 − l1 + l2)
ins(p3 − l2, c3)

(p2 − l1 + l2 ≤ p3)

NOOP

ins(p3 − l1, c3)
(p3 − l1 < p2 − l1)

NOOP (p2 − l1 ≤ p3 − l1
< p2 − l1 + l2)

ins(p3 − l1 − l2, c3)
(p2 − l1 + l2 ≤ p3 − l1)

=

p3 < p1

p1 ≤ p3 <
p1 + l1

p1 + l1 ≤ p3

p2 + l2 ≤ p1

ins(p3, c3) (p3 < p2)
NOOP

(p2 ≤ p3 < p2 + l2)
ins(p3 − l2, c3)

(p2 + l2 ≤ p3)

NOOP ins(p3 − l1 − l2, c3)

p2 ≤ p1 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3) (p3 < p2)
NOOP (p2 ≤ p3)

NOOP ins(p3 − l1 − p1 + p2, c3)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3) (p3 < p2)
NOOP (p2 ≤ p3)

NOOP
NOOP (p3 < p2 + l2)
ins(p3 − l2, c3) (p2 + l2 ≤ p3)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3) NOOP ins(p3 − l1, c3)

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3) NOOP
NOOP (p3 < p2 + l2)
ins(p3 − p2 − l2 + p1, c3)

(p2 + l2 ≤ p3)

p1 + l1 ≤ p2 ins(p3, c3) NOOP
ins(p3 − l1, c3) (p3 < p2)
NOOP (p2 ≤ p3 < p2 + l2)
ins(p3 − l1 − l2, c3) (p2 + l2 ≤ p3)

.
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Also,

(c/b)/(a\b) = (ins(p3, c3)/del(p2, l2))/(del(p1, l1)\del(p2, l2))

= (ins(p3, c3)/del(p2, l2))/(del(p1, l1)/del(p2, l2)),

which is exactly the expression for (c/a)/(b/a), with subscripts 1 and 2 interchanged. Hence the

table for (c/b)/(a\b) is as follows:

p3 < p2

p2 ≤ p3 <
p2 + l2

p2 + l2 ≤ p3

p1 + l1 ≤ p2

ins(p3, c3) (p3 < p1)
NOOP

(p1 ≤ p3 < p1 + l1)
ins(p3 − l1, c3)

(p1 + l1 ≤ p3)

NOOP ins(p3 − l1 − l2, c3)

p1 ≤ p2 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3)

NOOP ins(p3 − l2 − p2 + p1, c3)

p1 ≤ p2 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3) (p3 < p1)
NOOP (p1 ≤ p3)

NOOP
NOOP (p3 < p1 + l1)
ins(p3 − l1, c3) (p1 + l1 ≤ p3)

p2 ≤ p1 ≤
p1 + l1 ≤ p2 + l2

ins(p3, c3) NOOP ins(p3 − l2, c3)

p2 ≤ p1 ≤
p2 + l2 ≤ p1 + l1

ins(p3, c3) NOOP
NOOP (p3 < p1 + l1)
ins(p3 − p1 − l1 + p2, c3)

(p1 + l1 ≤ p3)

p2 + l2 ≤ p1 ins(p3, c3) NOOP
ins(p3 − l2, c3) (p3 < p1)
NOOP (p1 ≤ p3 < p1 + l1)
ins(p3 − l2 − l1, c3) (p1 + l1 ≤ p3)

Comparing this table with the previous one, we see that they are equivalent. Hence, (ĉ a)̂ (b̂ a) =

(ĉ b)̂ (â b). This completes Case 5.

Case 6 a = del(p1, l1), b = ins(p2, c2), c = del(p3, l3).

We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)

and (â c)̂ (b̂ c) = (a\c)\(b\c). We have

(a\b)\(c/b) = (del(p1, l1)\ins(p2, c2))\(del(p3, l3)/ins(p2, c2))

= (del(p1, l1)\ins(p2, c2))\(del(p3, l3)\ins(p2, c2)),
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which by Case 5 (interchange subscripts 2 and 3, and compare with (a\c)\(b\c) = (a\b)\(c/b) in

Case 5) is equal to (del(p1, l1)\del(p3, l3))\(ins(p2, c2)/del(p3, l3)). Hence,

(a\b)\(c/b) = (del(p1, l1)\del(p3, l3))\(ins(p2, c2)/del(p3, l3))

= (del(p1, l1)\del(p3, l3))\(ins(p2, c2)\del(p3, l3))

= (a\c)\(b/c).

Thus, (â b)̂ (ĉ b) = (â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)

and (b̂ c)̂ (â c) = (b\c)/(a\c). We have

(b/a)\(c/a) = (ins(p2, c2)/del(p1, l1))\(del(p3, l3)/del(p1, l1))

= (ins(p2, c2)/del(p1, l1))/(del(p3, l3)/del(p1, l1)),

which by Case 5 (interchange subscripts 2 and 3, and compare with (c/a)/(b/a) = (c/b)/(a\b) in

Case 5) is equal to (ins(p2, c2)/del(p3, l3))/(del(p1, l1)\del(p3, l3)). Hence,

(b/a)\(c/a) = (ins(p2, c2)/del(p3, l3))/(del(p1, l1)\del(p3, l3))

= (ins(p2, c2)\del(p3, l3))/(del(p1, l1)\del(p3, l3))

= (b\c)/(a\c).

Hence, (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c).

(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)

and (ĉ b)̂ (â b) = (c/b)/(a\b). We have

(c/a)/(b/a) = (del(p3, l3)/del(p1, l1))/(ins(p2, c2)/del(p1, l1))

= (del(p3, l3)/del(p1, l1))\(ins(p2, c2)/del(p1, l1)),

which by Case 5 (interchange subscripts 2 and 3, and compare with (b/a)\(c/a) = (b\c)/(a\c) in

Case 5) is equal to (del(p3, l3)\ins(p2, c2))/(del(p1, l1)\ins(p2, c2)). Hence,

(c/a)/(b/a) = (del(p3, l3)\ins(p2, c2))/(del(p1, l1)\ins(p2, c2))

= (del(p3, l3)/ins(p2, c2))/(del(p1, l1)\ins(p2, c2))

= (c/b)/(a\b).

Hence (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 6.
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Case 7 a = ins(p1, c1), b = del(p2, l2), c = del(p3, l3).

We must show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).

(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)

and (â c)̂ (b̂ c) = (a\c)\(b\c). We have

(a\b)\(c/b) = (ins(p1, c1)\del(p2, l2))\(del(p3, l3)/del(p2, l2))

= (ins(p1, c1)/del(p2, l2))/(del(p3, l3)\del(p2, l2)),

which by Case 5 (interchange subscripts 1 and 3, and compare with (c/b)/(a\b) = (c/a)/(b/a) in

Case 5) is equal to (ins(p1, c1)/del(p3, l3))/(del(p2, l2)\del(p3, l3)). Hence,

(a\b)\(c/b) = (ins(p1, c1)/del(p3, l3))/(del(p2, l2)\del(p3, l3))

= (ins(p1, c1)\del(p3, l3))\(del(p2, l2)\del(p3, l3))

= (a\c)\(b\c).

Thus, (â b)̂ (ĉ b) = (â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ): By the total ordering of a, b, and c, we have (b̂ a)̂ (ĉ a) = (b/a)\(c/a)

and (b̂ c)̂ (â c) = (b\c)/(a\c). We have

(b/a)\(c/a) = (del(p2, l2)/ins(p1, c1))\(del(p3, l3)/ins(p1, c1))

= (del(p2, l2)\ins(p1, c1))/(del(p3, l3)\ins(p1, c1)),

which by Case 5 (interchange subscripts 1 and 3, and compare with (b\c)/(a\c) = (b/a)\(c/a) in

Case 5) is equal to (del(p2, l2)/del(p3, l3))\(ins(p1, c1)/del(p3, l3)). Hence,

(b/a)\(c/a) = (del(p2, l2)/del(p3, l3))\(ins(p1, c1)/del(p3, l3))

= (del(p2, l2)\del(p3, l3))/(ins(p1, c1)\del(p3, l3))

= (b\c)/(a\c).

Thus, (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c).
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(ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): By the total ordering of a, b, and c, we have (ĉ a)̂ (b̂ a) = (c/a)/(b/a)

and (ĉ b)̂ (â b) = (c/b)/(a\b). We have

(c/a)/(b/a) = (del(p3, l3)/ins(p1, c1))/(del(p2, l2)/ins(p1, c1))

= (del(p3, l3)\ins(p1, c1))\(del(p2, l2)\ins(p1, c1)),

which by Case 5 (interchange subscripts 1 and 3, and compare with (a\c)\(b\c) = (a\b)\(c/b) in

Case 5) is equal to (del(p3, l3)\del(p2, l2))\(ins(p1, c1)/del(p2, l2)). Hence,

(c/a)/(b/a) = (del(p3, l3)\del(p2, l2))\(ins(p1, c1)/del(p2, l2))

= (del(p3, l3)/del(p2, l2))/(ins(p1, c1)\del(p2, l2))

= (c/b)/(a\b).

Thus, (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 7.

Case 8 a = del(p1, l1), b = del(p2, l2), c = del(p3, l3)

For the case where all three concurrent updates are deletions, we are effectively working in

the set of operations

{del(p, l)| p ≥ 1, l ≥ 1} ∪ {NOOP}

Any operation in this set can be represented as a composition of operations in the set

{d(p)| p ≥ 1} ∪ {NOOP},

where the operation d(p) deletes a single character at position p. The transformation rules on

deletions then simplify as follows:

d(p1)/d(p2) =











d(p1) (p1 < p2)

NOOP (p1 = p2)

d(p1 − 1) (p1 > p2)

d(p1)\d(p2) = d(p1)/d(p2)

By Theorem 3.14, we can verify Case 8 by working in this simplified set of operations. We need

to show that (â b)̂ (ĉ b) = (â c)̂ (b̂ c), (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c), and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b).
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(a b̂)̂ (ĉ b) = (a ĉ)̂ (b̂ c): By the total ordering of a, b, and c, we have (â b)̂ (ĉ b) = (a\b)\(c/b)

and (â c)̂ (b̂ c) = (a\c)\(b\b). We have

(a\b)\(c/b) = (d(p1)\d(p2))\(d(p3)/d(p2))

=







d(p1) (p1 < p2)

NOOP (p1 = p2)

d(p1 − 1) (p1 > p2)







∖







d(p3) (p3 < p2)

NOOP (p3 = p2)

d(p3 − 1) (p3 > p2)






,

which evaluates as follows:

p3 < p2 p3 = p2 p3 > p2

p1 < p2 d(p1)\d(p3) d(p1)\NOOP d(p1)\d(p3 − 1)

p1 = p2 NOOP\d(p3) NOOP\NOOP NOOP\d(p3 − 1)

p1 > p2 d(p1 − 1)\d(p3) d(p1 − 1)\NOOP d(p1 − 1)\d(p3 − 1)

=

p3 < p2 p3 = p2 p3 > p2

p1 < p2

d(p1) (p1 < p3)
NOOP (p1 = p3)

d(p1 − 1) (p1 > p3)
d(p1)

d(p1) (p1 < p3 − 1)
NOOP (p1 = p3 − 1)

d(p1 − 1) (p1 > p3 − 1)

p1 = p2 NOOP NOOP NOOP

p1 > p2

d(p1 − 1) (p1 − 1 < p3)
NOOP (p1 − 1 = p3)

d(p1 − 2) (p1 − 1 > p3)
d(p1 − 1)

d(p1 − 1) (p1 − 1 < p3 − 1)
NOOP (p1 − 1 = p3 − 1)

d(p1 − 2) (p1 − 1 > p3 − 1)

=

p3 < p2 p3 = p2 p3 > p2

p1 < p2

d(p1) (p1 < p3)
NOOP (p1 = p3)

d(p1 − 1) (p1 > p3)
d(p1) d(p1)

p1 = p2 NOOP NOOP NOOP

p1 > p2 d(p1 − 2) d(p1 − 1)
d(p1 − 1) (p1 < p3)
NOOP (p1 = p3)

d(p1 − 2) (p1 > p3)

.

Also,

(a\c)\(b\c) = (a\c)\(b/c),

which is exactly the expression for (a\b)\(c/b), with subscripts 2 and 3 interchanged. Hence, the
table for (a\c)\(b\c) is as follows:

p2 < p3 p2 = p3 p2 > p3

p1 < p3

d(p1) (p1 < p2)
NOOP (p1 = p2)

d(p1 − 1) (p1 > p2)
d(p1) d(p1)

p1 = p3 NOOP NOOP NOOP

p1 > p3 d(p1 − 2) d(p1 − 1)
d(p1 − 1) (p1 < p2)
NOOP (p1 = p2)

d(p1 − 2) (p1 > p2)

.
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Comparing this table with the previous one, we see that they are equivalent. Hence, (â b)̂ (ĉ b) =
(â c)̂ (b̂ c).

(b̂ a)̂ (ĉ a) = (b̂ c)̂ (a ĉ) and (ĉ a)̂ (b̂ a) = (ĉ b)̂ (a b̂): Since all three of a, b, and c are deletes,
and / and \ are identical over deletes, the task of verifying these two conditions is indistin-
guishable from the task of verifying (â b)̂ (ĉ b) = (â c)̂ (b̂ c). Thus, (b̂ a)̂ (ĉ a) = (b̂ c)̂ (â c) and
(ĉ a)̂ (b̂ a) = (ĉ b)̂ (â b). This completes Case 8.

Our verification of TP2 for text buffer operations is now complete.



Appendix B

Source Code

In this appendix, we give the source code for the CCU library we discussed in Chapter 4 and the
text buffer we constructed in Chapter 5.

B.1 CCU Library

B.1.1 Timestamp Module

signature TIMESTAMP = sig

exception Incompatible

exception Range

eqtype timestamp

val mktimestamp : int -> timestamp

val size : timestamp -> int

val inc : (timestamp * int) -> timestamp

val causalLT : (timestamp * timestamp) -> bool

val totalLT : (timestamp * timestamp) -> bool

val sup : (timestamp * timestamp) -> timestamp

val inf : (timestamp * timestamp) -> timestamp

val toString : timestamp -> string

end

structure Timestamp :> TIMESTAMP = struct

exception Incompatible and Range

120
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datatype timestamp = TS of int*int list

local

fun mklist 0 = nil

| mklist n = 0::mklist(n-1)

in

fun mktimestamp n = TS(n, mklist n)

end

fun size (TS(n, _)) = n

local

fun inclist nil _ = raise Range

| inclist (x::xs) 1 = (x+1)::xs

| inclist (x::xs) n = x::(inclist xs (n-1))

in

fun inc (TS(n, L), m) =

if m < 1 orelse m > n then

raise Range

else

TS(n, inclist L m)

end

fun equal(TS(a,b), TS(c,d)) = if a <> c then raise Incompatible

else b = d

fun causalLE(TS(a,nil), TS(c,nil)) = true

| causalLE(TS(a,x::xs), TS(c,y::ys)) =

if a <> c then raise Incompatible

else

if x <= y then causalLE(TS(a,xs),TS(c,ys))

else false

| causalLE(_,_) = raise Incompatible

fun causalLT(x,y) = causalLE(x,y) andalso (not (equal(x,y)))

fun totalLT(TS(a,nil), TS(c,nil)) = false

| totalLT(TS(a, x::xs), TS(c, y::ys)) =

if a <> c then raise Incompatible

else
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if x < y then true

else if x > y then false

else totalLT(TS(a, xs),TS(c, ys))

| totalLT(_,_) = raise Incompatible

fun max(a,b) = if a < b then b else a

fun min(a,b) = if a > b then b else a

fun sup(TS(a,nil), TS(c,nil)) = TS(a, nil)

| sup(TS(a, b::bs), TS(c, d::ds)) =

if a <> c then raise Incompatible

else

let val TS(x, y) = sup(TS(a, bs), TS(c, ds))

in TS(a, max(b, d)::y)

end

| sup(_,_) = raise Incompatible

fun inf(TS(a,nil), TS(c,nil)) = TS(a, nil)

| inf(TS(a, b::bs), TS(c, d::ds)) =

if a <> c then raise Incompatible

else

let val TS(x, y) = inf(TS(a, bs), TS(c, ds))

in TS(a, min(b, d)::y)

end

| inf(_,_) = raise Incompatible

fun toString (TS(_,x)) =

let

fun toString2 nil = ""

| toString2 [n] = Int.toString n

| toString2 (n::ns) = Int.toString n ^ "," ^ toString2 ns

in

"(" ^ toString2 x ^ ")"

end

end

B.1.2 Network Abstraction

(* Our purpose here is to reimplement the MULTICAST signature to emulate

communication over a network. We do this by providing modified versions
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of the functions multicast and port that introduce random delays, thus

destroying the FIFO ordering of events. *)

structure Netcast:MULTICAST = struct

structure C = CML

structure M = Multicast

structure R = Random

val r = R.rand(3,4) (* Arbitrarily chosen integers to set the seed *)

type ’a event = ’a M.event

type ’a mchan = ’a M.mchan

type ’a port = ’a Mailbox.mbox

val mChannel = M.mChannel

fun multicast (ch, a) = ignore (

C.spawn (fn () => (

C.sync(

C.timeOutEvt(

Time.fromMicroseconds(Int32.fromInt(R.randRange(1,100000) r))

)

);

M.multicast(ch, a)

))

)

fun port mc =

let

val mb = Mailbox.mailbox()

val p = M.port mc

fun server () =

let

val x = M.recv p

in

C.spawn (fn () => (

C.sync (

C.timeOutEvt (

Time.fromMicroseconds(

Int32.fromInt(R.randRange(1,10000) r)

)

)

);
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Mailbox.send(mb, x)

));

server ()

end

in

C.spawn server;

mb

end

val recv = Mailbox.recv

val recvEvt = Mailbox.recvEvt

exception NotSupported

fun copy _ = raise NotSupported

end

B.1.3 CCUOBJ and CCUAPI Signatures

signature CCUOBJ = sig

type state

val stateToString : state -> string

eqtype operation

val operationToString : operation -> string

val apply : (operation * state) -> state

val / : (operation * operation) -> operation

val \ : (operation * operation) -> operation

end

signature CCUAPI = sig

type state

eqtype operation

type siteid = int

structure T : TIMESTAMP

(* For communication with the driver. *)

datatype message = MSG of operation * T.timestamp

| QUIT of T.timestamp

(* For communication with peers. *)
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datatype netmessage = NMSG of operation * siteid * T.timestamp

| NQUIT of siteid * T.timestamp

type ccuobject

type commtoken

(* Blocking *)

val update : (commtoken * message) -> T.timestamp

val query : commtoken -> (state * T.timestamp)

exception Done

(* Non-blocking -- use with caution. *)

val send : (commtoken * message) -> unit

val recv : commtoken -> message

val recvEvt : commtoken -> message CML.event

structure M : MULTICAST = Netcast

val create : (state * netmessage M.mchan * netmessage M.port

* int * siteid) -> ccuobject

val start : ccuobject -> commtoken

val numSites : ccuobject -> int

end

B.1.4 CCU Functor

(* This is the code for the actual CCU functor, which maps a specification

for a shared state to a structure containing API functions for

creating and manipulating CCU objects based on the shared state.

object. The structure ccuobj contains all the rules for transforming

and applying updates to the state. The code for communicating with the

driver and the other instances of the CCU object resides here. *)

functor CCU(structure ccuobj: CCUOBJ): CCUAPI = struct

structure A = Array

structure M = Netcast

structure D = Debug

structure T = Timestamp

exception Error

type state = ccuobj.state

type operation = ccuobj.operation

type siteid = int
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datatype message = MSG of operation * Timestamp.timestamp

| QUIT of Timestamp.timestamp

datatype netmessage = NMSG of operation * siteid * Timestamp.timestamp

| NQUIT of siteid * Timestamp.timestamp

val operationToString = ccuobj.operationToString

val stateToString = ccuobj.stateToString

fun msgToString (NMSG (u, s, t)) =

"NMSG(" ^ Int.toString s ^ "," ^ operationToString u ^ "," ^

T.toString t ^ ")"

| msgToString (NQUIT (s, t)) =

"NQUIT(" ^ Int.toString s ^ "," ^ T.toString t ^ ")"

fun msgListToString x =

let

fun msgListToString2 nil = ""

| msgListToString2 [y] = msgToString y

| msgListToString2 (y::ys) = msgToString y ^ "," ^

msgListToString2 ys

in

"[" ^ msgListToString2 x ^ "]"

end

nonfix /

val / = ccuobj./

val \ = ccuobj.\

val apply = ccuobj.apply

(* The caret operator (^): / or \ depending on how the timestamps are

ordered. *)

fun op ^ (NMSG(u1, s1, t1), NMSG(u2, s2, t2)) =

NMSG(if Timestamp.totalLT(t1, t2) then \(u1,u2) else /(u1,u2), s1, t1)

| op ^ _ = raise Error

(* Our use of ^ obscures the ^ operator in the String structure, so we

will assign String.^ to the operator &. *)

nonfix ^

val & = String.^
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infix ^

infix &

(* ^^ is the ^ operator applied to lists (sequences) of updates. *)

infix ^^

fun op ^^ (x, nil) = x

| op ^^ (nil, _) = nil

| op ^^ ([x], [y]) = [x ^ y]

| op ^^ (x, y::(ys as _::_)) = (x ^^ [y]) ^^ ys

| op ^^ (x::(xs as _::_), y) = ([x] ^^ y) ^^ (xs ^^ (y ^^ [x]))

(* Here we define ||, the vertical bar (|) operator from the CCU paper.

We need several auxiliary definitions as well. *)

local

exception Bad

val totalLT = Timestamp.totalLT

val causalLT = Timestamp.causalLT

val filter = List.filter

fun max nil = raise Bad

| max [x] = x

| max ((x1 as NMSG(_,_,t1))::(x2 as NMSG(_,_,t2))::xs) =

if totalLT(t1,t2) then max(x2::xs)

else max(x1::xs)

| max _ = raise Error

fun member (_, nil) = false

| member (x, y::ys) = if x = y then true else member(x, ys)

infix U

fun op U (x, nil) = x

| op U (nil, x) = x

| op U (x::xs, y) = if member(x,y) then xs U y

else xs U (x::y)

in

infix ||

fun op || (W1, W2) =

if W1 = W2 then nil

else

let
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val u = max[(max W1 handle Bad => max W2),

(max W2 handle Bad => max W1)]

val t = case u of NMSG(_,_,t’) => t’

| _ => raise Error

val fil = filter(fn (NMSG(_,_,t1)) => totalLT(t1,t)

| _ => raise Error)

val fil’ = filter(fn (NMSG(_,_,t1)) => causalLT(t1,t)

| _ => raise Error)

in

if member(u,W2) then

let

val W1’ = fil W1

val W2’ = fil W2

val W = W1 U W2

val W’’ = fil’ W

in

(W1’ || W2’) ^^ ([u] ^^ (W2’ || W’’))

end

else

let

val W1’ = fil W1

val W = W1 U W2

val W’ = fil W

val W’’ = fil’ W

in

(W1’ || W2) @ ([u] ^^ (W’ || W’’))

end

end

end

structure CommToken = struct

abstype commtoken = CT of message Mailbox.mbox * message Mailbox.mbox

* unit Mailbox.mbox * (state * T.timestamp) Mailbox.mbox

with

fun create () = CT(Mailbox.mailbox(), Mailbox.mailbox(),

Mailbox.mailbox(), Mailbox.mailbox())

fun send (CT ct, m) = Mailbox.send(#1 ct, m)

fun recv (CT ct) = Mailbox.recv(#2 ct)

fun recvEvt (CT ct) = Mailbox.recvEvt(#2 ct)

fun externalSend (CT ct, m) = Mailbox.send(#2 ct, m)
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fun externalRecv (CT ct) = Mailbox.recv(#1 ct)

fun externalRecvEvt (CT ct) = Mailbox.recvEvt(#1 ct)

fun query (CT ct) = (Mailbox.send(#3 ct, ()); Mailbox.recv(#4 ct))

fun recvQryEvt (CT ct) = Mailbox.recvEvt(#3 ct)

fun sendQryReply (CT ct, m) = Mailbox.send(#4 ct, m)

end

end

(* The actual CCU object encapsulates the replicated state, a multicast

channel for outgoing updates, a port on that channel to listen for

incoming updates, a timestamp representing the site’s view of the rest

of the world, the site’s ID, a queue of unapplied updates, and a

history log. *)

abstype ccuobject = CCUOBJ of {id: {siteid: int,

outgoing: netmessage M.mchan,

incoming: netmessage M.port,

archive: string->unit},

state: ccuobj.state,

timestamp: Timestamp.timestamp,

queue: netmessage Fifo.fifo,

log: netmessage list,

sitesDone: bool array}

with

(* p is assumed to be a port on the multicast channel ch. It is

created prior to the call to create in order to make sure that

no instance sends a message before all of the ports have been

constructed (otherwise messages will be lost). *)

fun create (x,ch,p,n,id) =

let

val entry = "Creating site " & (Int.toString id) &

" with initial state " & stateToString x & "\n"

val archiver = D.updateLog id

in

D.createLog id;

CCUOBJ {

id = {

siteid = id,

outgoing = ch,
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incoming = p,

archive = archiver

},

state = x,

timestamp = Timestamp.mktimestamp n,

queue = Fifo.empty,

log = nil,

sitesDone = A.array(n, false)

} before

(archiver entry)

end

fun print (CCUOBJ{state,...}) = TextIO.print(stateToString state & "\n")

fun numSites(CCUOBJ{timestamp,...}) = T.size timestamp

(* Handle an update that originated locally. *)

(* We assume that updates coming from the local driver come in

FIFO order. *)

fun localUpdate (CCUOBJ {id = id as {siteid, outgoing, archive,...},

state, timestamp, log, queue, sitesDone}, ct)

(m as MSG(u, t)) =

let

(* Compute new timestamp *)

val t’ = T.inc(t, siteid)

val timestamp’ = T.sup(timestamp, t’)

in

archive ("Received local update " & operationToString u &

" with timestamp " & T.toString t & ".\n");

(* Transform the update *)

let

val temp = case (NMSG(u, siteid, t’) :: log) || log

of [x] => x | _ => raise Error

val (u’,t’) = case temp of NMSG(u1, _, t1) => (u1, t1)

| _ => raise Error

val state’ = apply(u’, state)

in

archive ("Transformed to " & operationToString u’ & ".\n");
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(* Broadcast and apply the update *)

M.multicast(outgoing, NMSG(u’, siteid, timestamp));

CommToken.send(ct, MSG(u, timestamp’));

archive ("New state is " & stateToString state’ & ".\n");

CCUOBJ {

id = id,

state = state’,

timestamp = timestamp’,

queue = queue,

log = NMSG(u, siteid, t’) :: log,

sitesDone = sitesDone

}

end

end

| localUpdate (ccu as CCUOBJ{id = {siteid, outgoing, archive, ...},

timestamp, sitesDone, ...}, _)

(m as QUIT ts) = (

archive ("Received local QUIT message with timestamp " &

T.toString ts & ".\n");

A.update(sitesDone, siteid-1, true);

M.multicast(outgoing, NQUIT(siteid, timestamp));

ccu

)

(* Handle an update that originated at another site. *)

fun remoteUpdate (ccu as CCUOBJ{id = id as {siteid,

outgoing,

archive, ...},

state, timestamp, queue, log, sitesDone})

(m as NMSG(u, s, t)) = (

archive ("Site " & Int.toString siteid & " received message "

& operationToString u & " from site " & Int.toString s &

" with timestamp " & T.toString t & ".\n");

(* Because all instances of the CCU object are sharing a single

multicast channel, an instance will receive any message it

sends. We want to ignore all of these messages. *)

(* Also ignore any messages coming from sites that have sent a
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quit message (there shouldn’t be any of these). *)

if s = siteid orelse A.sub(sitesDone,s-1) then (

archive "Ignored.\n";

ccu

)

else

if T.causalLT(t,timestamp) orelse timestamp = t then

(* Transform and apply the update *)

(* Note that we are making use of Theorem 2 here *)

let

val t’ = T.inc(t,s)

val _ = archive(msgListToString(NMSG(u,s,t’) :: log) & "|")

val _ = archive(msgListToString(log) & "\n")

val temp = case (NMSG(u, s, t’) :: log) || log

of [x] => x | _ => raise Error

val u’ = case temp of NMSG(u1, _, _) => u1

| _ => raise Error

val state’ = apply(u’, state)

val t’’ = T.sup(t’, timestamp)

in

archive ("Transformed to " & operationToString u’ & ".\n");

archive ("New timestamp is " & T.toString t’’ & ".\n");

archive ("New state is " & stateToString state’ & ".\n");

CCUOBJ {

id = id,

state = state’,

timestamp = t’’,

queue = queue,

log = NMSG (u, s, t’) :: log,

sitesDone = sitesDone

}

end

else (

archive "Enqueued.\n";

(* If the update cannot be applied, enqueue it *)

CCUOBJ {

id = id,

state = state,

timestamp = timestamp,
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queue = Fifo.enqueue(queue, m),

log = log,

sitesDone = sitesDone

}

)

)

| remoteUpdate (ccu as CCUOBJ{id = id as {siteid, archive, ...},

state, timestamp, queue, log, sitesDone})

(m as NQUIT(s, t)) = (

archive ("Site " & Int.toString siteid &

" received NQUIT message from site " & Int.toString s

& " with timestamp " & T.toString t & ".\n");

if s=siteid then ccu

else

if T.causalLT(t,timestamp) orelse timestamp = t then (

A.update(sitesDone,s-1,true);

ccu

)

else (

(* If there are outstanding messages, enqueue the quit

request *)

archive "Enqueued.\n";

CCUOBJ {

id = id,

state = state,

timestamp = timestamp,

queue = Fifo.enqueue(queue, m),

log = log,

sitesDone = sitesDone

}

)

)

(* Try again to apply the first update in the queue (which hasn’t

yet been applied because the prerequisites haven’t been met). *)

(* Assumes: m is the first element of !queue *)

fun checkQueue (CCUOBJ{id, state, timestamp, queue, log, sitesDone})

m = (

(#archive id) "Reexamining queue.\n";
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remoteUpdate (CCUOBJ {

id = id,

state = state,

timestamp = timestamp,

queue = #1(Fifo.dequeue(queue)),

log = log,

sitesDone = sitesDone

}) m

)

(* This function is to be called by the driver. It starts a

server for the current instance of the CCU object, and returns

a mailbox for sending it commands. *)

fun start (y as CCUOBJ (x as {id, ...})) =

let

(* For communication with the driver. Note that the order of

mbOut and mbIn is the reverse of what it is in driver.sml. *)

val commToken = CommToken.create()

(* This function shamelessly lifted out of Ullman’s book,

p. 240. :-) *)

fun checkAll(A,i) =

i < 0 orelse A.sub(A,i) andalso checkAll(A, i-1)

fun loop (ccu as CCUOBJ (x as {id, ...})) =

let

(* Do not accept local messages after the driver

has issued a NQUIT request. *)

val e1 = if A.sub(#sitesDone x, #siteid id - 1) then

CML.never

else

CommToken.recvEvt commToken

val e2 = M.recvEvt (#incoming id)

val e3 = CommToken.recvQryEvt commToken

in

if checkAll(#sitesDone x, numSites ccu - 1) then (

(#archive id) ("Site " & Int.toString (#siteid id)

& " terminating.\nFinal state is " &

stateToString (#state x) & ".\n");
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D.closeLog (#siteid id);

CML.exit()

)

else

loop (

CML.select [

CML.wrap(e1, localUpdate (ccu, commToken)),

CML.wrap(e2, remoteUpdate ccu),

CML.wrap(e3, (fn () => (CommToken.sendQryReply (

commToken, (#state x, #timestamp x)); ccu))),

CML.wrap(if Fifo.isEmpty(#queue x) then

CML.never

else

CML.alwaysEvt(Fifo.head(#queue x)),

checkQueue ccu)

]

)

end

in

D.print("Starting site " & (Int.toString (#siteid id)) & ".\n");

CML.spawnc loop y;

commToken

end

end

(* For use by client modules. *)

type commtoken = CommToken.commtoken

val send = CommToken.externalSend

val recv = CommToken.externalRecv

val recvEvt = CommToken.externalRecvEvt

exception Done

fun update (ct, m) = (

send (ct, m);

let

val temp = recv ct

val ts = case temp of

MSG (_, ts’) => ts’
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| _ => raise Done

in

ts

end

)

val query = CommToken.query

end

B.1.5 Driver Signature

(* Signature for drivers. Contains definitions the application designer

must supply in order to use the initialization functor. If the designer

prefers to hand-code the initialization, then the drivers need not

conform to this signature. *)

signature DRIVER = sig

type driver

type commtoken

type init

val initialize : unit -> unit

val initData : unit -> init

val mkdriver : (unit -> commtoken) -> Timestamp.timestamp ->

init -> driver

val main : driver -> unit

end

B.1.6 Initialization Functor

(* A functor to generate initialization code for the CCU objects *)

functor InitFn( structure Obj : CCUAPI;

structure D : DRIVER;

sharing type Obj.commtoken = D.commtoken

) : sig

val init: (int * Obj.state) -> unit

end

= struct

structure M = Netcast
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type state = Obj.state

(* n is the number of instances to create *)

(* initState is the shared initial state of the objects *)

fun init (n,initState) =

let

(* Create a multicast channel and a list of n ports on it. *)

val mc = M.mChannel()

fun mkPorts 0 = nil

| mkPorts n = (M.port mc) :: mkPorts(n-1)

(* Now create a CCU object for each port. *)

fun mkObjs nil = nil

| mkObjs (p::ps) = Obj.create(initState, mc, p, n,

n - length ps) :: mkObjs ps

val objs = mkObjs (mkPorts n)

(* Now make a driver for each instance of the CCU object. *)

fun mkDrivers nil = nil

| mkDrivers (ob::obs) =

D.mkdriver (fn () => Obj.start ob)

(Timestamp.mktimestamp n)

(D.initData ()) :: mkDrivers obs

val _ = D.initialize ()

val drivers = mkDrivers objs

in

app (fn d => ignore (CML.spawn (fn () => D.main d))) drivers;

CML.sync CML.never

end

end

B.1.7 Debugging Module

(* Print debugging messages; log actions to log files. *)

structure Debug: sig

val print: string->unit

val set: unit->unit
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val clear: unit->unit

val createLog: int->unit

val updateLog: int->string->unit

val closeLog: int->unit

end

= struct

val debug = ref true

val logs = ref (nil: (int * TextIO.outstream) list)

fun set () = debug := true

fun clear () = debug := false

fun print s = if !debug then TextIO.print s else ()

fun hasLog n =

let

fun hasLog2 nil = false

| hasLog2 ((m,_)::xs) = if m = n then true else hasLog2 xs

in

hasLog2 (!logs)

end

exception notFound

fun getStream n =

let

fun getStream2 nil = raise notFound

| getStream2 ((m,s)::xs) = if m = n then s else getStream2 xs

in

getStream2 (!logs)

end

fun removeLog n =

let

fun removeLog2 nil = nil

| removeLog2 ((x as (m, _))::xs) =

if m = n then xs

else x :: removeLog2 xs

in

logs := removeLog2 (!logs)

end
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fun createLog n =

if hasLog n then ()

else

let

val outStream = TextIO.openOut("site" ^ Int.toString n ^ ".log")

in

logs := (n, outStream) :: !logs

end

fun updateLog n s =

(TextIO.output(getStream n, s); print s) handle notFound => ()

fun closeLog n = (

TextIO.closeOut(getStream n);

removeLog n

) handle notFound => ()

end

B.2 Shared Text Buffer

B.2.1 Shared Object Specification

structure CCUTextBuf = struct

type state = char list

val stateToString = implode

datatype operation = Insert of int*string | Delete of int*int

fun operationToString (Insert(n,s)) = "Insert(" ^ Int.toString n ^ ",\"" ^

s ^ "\")"

| operationToString (Delete(m,n)) = "Delete(" ^ Int.toString m ^ "," ^

Int.toString n ^ ")"

exception BadUpdate

fun apply(Insert(1,b), x) = (explode b) @ x

| apply(Insert(a,b), x::xs) = if a <= 0 then raise BadUpdate

else x :: apply(Insert(a-1,b), xs)
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| apply(Delete(1,0), x) = x

| apply(Delete(1,b), _::xs) = if b < 0 then raise BadUpdate

else apply(Delete(1, b-1), xs)

| apply(Delete(a,b), x::xs) = if a <= 0 then raise BadUpdate

else x :: apply(Delete(a-1,b), xs)

| apply _ = raise BadUpdate

nonfix /

fun / (Insert(a,b), Insert(c,d)) =

if a < c then

Insert(a, b)

else

Insert(a + size d, b)

| / (Delete(a,b), Delete(c,d)) =

if a + b <= c then

Delete(a, b)

else if a <= c andalso c <= a + b andalso a + b <= c + d then

Delete(a, c - a)

else if a <= c andalso c <= c + d andalso c + d <= a + b then

Delete(a, d - b)

else if c <= a andalso a <= a + b andalso a + b <= c + d then

Delete(c, 0)

else if c <= a andalso a <= c + d andalso c + d <= a + b then

Delete(c, a + b - c - d)

else

Delete(a - d, b)

| / (Delete(a,b), Insert(c,d)) =

if a + b <= c then

Delete(a, b)

else if a <= c andalso c < a + b then

Delete(a, b + size d)

else

Delete(a + size d, b)

| / (Insert(a,b), Delete(c,d)) =

if a < c then

Insert(a, b)

else if c <= a andalso a < c + d then

Insert(c, "")

else

Insert(a - d, b)
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fun \ (i as Insert(a, b), Insert(c, d)) =

if a <= c then i else Insert(a + size d, b)

| \ x = / x

end

B.2.2 Script-file Interface

structure GetCommands: sig

type commandstream

exception Command and EOF

type operation = TextBuf.operation

datatype command = Operation of operation | Delay of int | Quit

val mkCommandStream: string -> commandstream

val getCommand: commandstream -> command

val closeCommandStream: commandstream -> unit

end

= struct

structure TB = CCUTextBuf

type commandstream = TextIO.instream

exception Command and EOF

type operation = TextBuf.operation

datatype command = Operation of operation | Delay of int | Quit

val mkCommandStream = TextIO.openIn

(* I find that dealing with options in code is a bit awkward.

I prefer this version of Int.fromString that raises an exception

when the format of the string is bad. *)

fun removeOption e f x = case f x of NONE => raise e | SOME y => y

exception BadInt

val stringToInt = removeOption BadInt Int.fromString

(* Convert a list of strings to a command. *)

fun mkupdate [a,b,c] =

(if a = "i" then Operation(TB.Insert(stringToInt b, c))

else if a = "d" then Operation(TB.Delete(stringToInt b, stringToInt c))

else raise Command
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handle _ => raise Command)

| mkupdate [a,b] =

(if a = "w" then Delay(stringToInt b)

else raise Command

handle _ => raise Command)

| mkupdate [a] =

if a = "q" then Quit else raise Command

| mkupdate _ = raise Command

fun getCommand cs =

let

val s = let

val x = TextIO.inputLine cs

in

if x = "" then raise EOF else x

end

val c = String.tokens(

fn x => not (Char.isAlpha x orelse Char.isDigit x)

) s

in

mkupdate c

end

val closeCommandStream = TextIO.closeIn

end

B.2.3 Driver

(* The "driver" that contains the code that actually sends instructions to the

CCU object. Supports a constructor mkdriver and a function main that sets

everything in motion. This driver is specific to the text buffer. *)

structure Driver: DRIVER = struct

structure TS = Timestamp

structure C = GetCommands

structure TB = TextBuf

type operation = TB.operation

datatype message = datatype TB.message

type commtoken = TB.commtoken
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exception Done of Timestamp.timestamp

type init = string

(* counter to properly assign input files *)

val x = ref 1

fun initialize () = x := 1

fun initData () = ("dr" ^ Int.toString(!x) ^ ".cmd") before x := !x + 1

abstype driver = Driver of (unit->commtoken) * TS.timestamp * string

with

fun mkdriver f t s = Driver (f, t, s)

fun main (Driver (f, t, s)) =

let

val comStream = C.mkCommandStream s

val commToken = f ()

fun mainLoop ts =

let

val c = C.getCommand comStream

in

TextIO.print (s ^ "\n");

case c of

C.Delay x => (

CML.sync (

CML.timeOutEvt (

Time.fromMicroseconds (Int32.fromInt x)

)

);

mainLoop ts

)

| C.Operation x => mainLoop (

TB.update(commToken, MSG(x, ts))

handle _ => raise Done ts

)

| C.Quit =>

raise Done ts

end
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handle C.EOF => raise Done ts

in

mainLoop t

handle Done ts => (TB.send(commToken, QUIT ts);

C.closeCommandStream comStream)

end

end

end

B.2.4 Shared Object

structure TextBuf = CCU(structure ccuobj = CCUTextBuf)

B.2.5 Initializer

(* Initialization code for text buffer. *)

structure Init = InitFn(structure Obj = TextBuf; structure D = Driver)

B.2.6 Mainline

(* Code that contains the call to RunCML.doit to set the scheduling

quantum and set everything in motion. *)

structure Mainline: sig

val main: (int * string) -> unit

end

= struct

(* n is the number of sites to create *)

(* initState is the shared initial state *)

fun main (n,initState) = ignore (

RunCML.doit(fn () => Init.init(n,explode initState), NONE)

)

end

fun checkFinalStates () = ignore (

RunCML.doit(fn () => ignore (OS.Process.system "grep Final *.log"), NONE)

)



Bibliography

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New York,
1992.

[2] Association for Computing Machinery. Proceedings of the 1998 ACM Conference on
Computer-Supported Cooperative Work, Seattle, November 1998.

[3] Gordon V. Cormack. A calculus for concurrent update. Research Report CS-95-06, Dept. of
Computer Science, University of Waterloo, 1995.

[4] Gordon V. Cormack. A counterexample to the distributed operational transform and a
corrected algorithm for point-to-point communication. Research Report CS-95-08, Dept. of
Computer Science, University of Waterloo, 1995.

[5] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and
Design. Addison-Wesley, Harlow, England, third edition, 2001.

[6] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. ACM SIGMOD
Record, 18(2):399–407, 1989.

[7] Clarence A. Ellis. A model and algorithm for concurrent access with groupware. Technical
Report CU-CS-593-92, Department of Computer Science, University of Colorado at Boulder,
1992.

[8] Charles F. Goldfarb and Paul Prescod. The XML Handbook. Prentice Hall, Upper Saddle
River, New Jersey, 1998.

[9] Saul Greenberg and David Marwood. Real time groupware as a distributed system: Con-
currency control and its effect on the interface. In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work, pages 207–217. Association for Computing Machin-
ery, November 1994.

[10] Irene Greif, Robert Seliger, and William Weihl. Atomic data abstractions in a distributed
collaborative editing system. In Proceedings of the 13th Annual Symposium on Principles

145



BIBLIOGRAPHY 146

of Programming Languages, pages 160–172. Association for Computing Machinery, January
1986.

[11] Christopher Hendrie. Objects which break “A calculus for concurrent update”. Research
Report CS499, Dept. of Computer Science, University of Waterloo, 1998.

[12] Michael J. Knister and Atul Prakash. Distedit: A distributed tookit for supporting multiple
group editors. In Proceedings of the ACM Conference on Computer-Supported Cooperative
Work, pages 343–355. Association for Computing Machinery, October 1990.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, July 1978.

[14] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). The MIT Press, Cambridge Massachusetts, 1997.

[15] David A. Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency, low-
bandwidth windowing in the Jupiter collaboration system. In Proceedings of the ACM Sym-
posium on User Interface Software and Technologies, pages 111–120, November 1995.

[16] Christopher R. Palmer and Gordon V. Cormack. Operation transforms for a distributed
shared spreadsheet. In Proceedings of the 1998 ACM Conference on Computer-Supported
Cooperative Work [2], pages 69–78.

[17] John H. Reppy. Concurrent Programming in ML. Cambridge University Press, New York,
1999.

[18] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. An integrating,
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