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Abstract
Three pointer-based parallel join algorithms are pre-

sented and analyzed for environments in which secondary
storage is made transparent to the programmer through
memory mapping. Buhr, Goel, and Wai [11] have shown
that data structures such as B-Trees, R-Trees and graph
data structures can be implemented as efficiently and effec-
tively in this environment as in a traditional environment
using explicit I/O. Here we show how higher-order algo-
rithms, in particular parallel join algorithms, behave in
a memory mapped environment. A quantitative analytical
model has been developed to conduct performance anal-
ysis of the parallel join algorithms. The model has been
validated by experiments.

1 Introduction
Programmers working with complex and possibly large

persistent data structures are faced with the problem that
there are two, mostly incompatible, views of structured
data, namely data in primary and secondary storage. In
primary storage, pointers are used to construct complex
relationships among data; establishing these relationships
without pointers is often cumbersome and expensive.

Significant research has occurred over the last decade,
starting with the seminal work by Atkinson and Morri-
son [8, 9], on efficient and simple-to-use methodologies
for constructing, storing, and subsequently retrieving large
persistent data structures in a fashion that makes the sec-
ondary storage transparent to the programmer. The ap-
proaches extend primary storage practices and tools so that
they also apply to secondary storage. Merging primary
and secondary storage in this way produces a single-level
store, which gives the illusion that data on secondary stor-
age is accessible in the same way as data in primary stor-
age. This uniform view of data eliminates the need for ex-
pensive execution-time conversions of structured data be-
tween primary and secondary storage and allows the ex-
pressive power and the data structuring capabilities of a
general purpose programming language to be used for sec-
ondary storage. Although a single-level store was investi-
gated as far back as the Multics system (1968) [26], it has
seen only limited use even in the field of operating systems;
only in the last few years has this approach blossomed in
both the database and programming language communi-
ties [28, 13, 32, 21]. For complex data structures, a single-
level store offers substantial performance advantages over
conventional file access, which is crucial to database appli-
cations such as computer-aided design, text management,
and geographical information systems.

While there are several ways to implement a single-
level store, many projects do so using memory-mapping.
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Memory mapping is the use of virtual memory to map files
stored on secondary storage into primary storage so that the
data is directly accessible by the processor’s instructions.
In this environment, there are no explicit read and write
routine calls to access data on disk. All read and write op-
erations are done implicitly by the operating system during
execution of a program. When the working set of an appli-
cation can be kept entirely in memory, performance begins
to approach that of memory-resident databases.

The goal of this work is to investigate the behaviour of
existing database algorithms in a particular kind of mem-
ory mapped environment, especially in highly parallel sys-
tems. The algorithm chosen as the starting point for this
work is the join algorithm: “Because any data model sup-
porting sets and lists requires at least intersection, union,
and difference operations for large sets, we believe that [the
discussion of join algorithms] is relevant to relational, ex-
tensible, and object-oriented database systems alike.” [17]
In particular, this work examines parallel versions of nested
loops, sort-merge, and Grace [20] algorithms for memory
mapped environments. A quantitative analytical model has
been designed and validated through experiments for each
parallel join algorithm. Our hope is that the model will
act as a high-level filter for data structure and algorithm
designers to predict general performance behaviour with-
out having to construct and test specific approaches. More
importantly, a quantitative model is an essential tool for
subsystems such as a query optimizer.

2 Related Work
The influences on our work stretch across a number of

areas within computer science. We divide our brief survey
of the literature into three areas: persistence through mem-
ory mapping, theoretical I/O modelling, and other studies
on database joins in shared-memory environments.

2.1 Related Memory-Mapping Approaches
All approaches to implementing memory mapped

single-level stores have to deal with the address consis-
tency problem. When data is copied from secondary to
primary storage, either the data must be positioned exactly
where it was created (to maintain integrity of references),
or the addresses must be modified to reflect its new loca-
tion. The former case is difficult to handle because data
from two or more memory mapped files may map to the
same location, producing an irreconcilable conflict. The
latter case is difficult to handle because it must be possi-
ble to locate all pointers so they can be updated, and there
is the additional runtime cost of modifying the pointers.
Pointer modification may be handled eagerly or lazily; in
general, eager modification of pointers is called relocation
and lazy modification is called pointer swizzling [12, 25].

Objectstore [21] is a commercial product that uses
pointer relocation, Paul Wilson has developed related
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pointer swizzling schemes [38], and other pointer relo-
cation schemes are appearing, such as QuickStore [37].
However, we argue that a significant performance advan-
tage of a single-level store is lost if all the pointers within
it have to be relocated or swizzled. This loss of advantage
is especially significant for operations that incur high over-
head in data preparation; examples include operations like
sequential scans, where the data is accessed only once, and
operations that deal with large data structures with small
primary storage, where the data is implicitly fetched and
prepared multiple times. Therefore, we are pursuing the
alternative approach of exact positioning of data so reloca-
tion or swizzling of pointers is significantly or completely
eliminated during transfers to and from secondary storage.

To this end, we are developing µDatabase [11], a toolkit
for building persistent data structures using the “exact posi-
tioning of data” approach to memory mapping. µDatabase
employs a novel technique that allows application of an old
solution to the problem of address collisions when map-
ping multiple memory mapped data structures. The old so-
lution is hardware segmentation; each hardware segment is
an address space starting at a virtual zero, in which a per-
sistent data structure can be built, stored, and subsequently
retrieved and modified. Multiple segments can be simulta-
neously accessed in a single application because each seg-
ment has its own non-conflicting address-space. When a
segment is mapped into memory, pointers within the seg-
ment do not require modification; pointers outside the seg-
ment do require modification, but in general, these pointers
represent a small percentage of the total number of pointers
in a data structure. Our technique uses the UNIX system
call mmap to mimic segmentation on hardware that does
not support it. Furthermore, µDatabase has direct access to
the concurrency facilities provided by µC++ [10], which al-
lows a high level of concurrency through multi-threading.

The main disadvantage of our technique is the need to
perform additional copying when transferring data from
segment to segment. When the hardware does not sup-
port segmentation, no inter-segment copy instruction ex-
ists. Therefore, it is necessary for segments to share some
portion of their address space for transferring information;
hence, our segments have an address space that is divided
into private and shared portions (see [11] for details).

2.2 Related Theoretical Models

In recent years, attempts have been made to model
the I/O bottleneck, and spatial and temporal locality from
within the theoretical framework. These models build on
the framework of the sequential RAM [5] and its paral-
lel variant, the PRAM [14]. The first step towards a more
realistic memory model is distinguishing between local
and global memory [27, 2], yielding a two-level memory
scheme. More recently, there have been attempts to model
multi-level memory [1, 3, 6], both in sequential and par-
allel settings. The notions of block transfer and hierarchy
are developed further in a parallel model in which mem-
ory consists of a tree of modules, where computation takes
place at the leaves [6]. I/O complexity models start with a
single disk and CPU with block transfer [18, 4] and con-
tinue through parallel disks with flat memory and hierar-
chical memory [35, 36]. Our analytical model draws on
ideas from several of these papers, though our intent is not

to characterize the complexity of problems, but rather to
predict performance on many real architectures.

2.3 Related Database Studies

Our work builds on the framework proposed by Shekita
and Carey [33]. They present an unvalidated single-
processor, single-disk model for three pointer-based join
algorithms: nested loops, sort-merge, hybrid hash. Our
model is multiprocessor, multi-disk and removes or modi-
fies a number of simplifying assumptions made by Shekita
and Carey. They assume the cost of I/O on a single byte
to be a constant, not taking into account seek times or the
possibility of savings using block transfer; they do not dis-
tinguish between sequential and random I/O; they do not
consider the fact that the minimum I/O transfer unit on
virtually all computers is at least a disk sector and more
commonly a page. For the hybrid-hash algorithm, two as-
sumptions made in their paper need to be extracted from
the analysis: constant-time hashing, and clustering of iden-
tical references in a single hash chain. We replaced the
second assumption with the weaker assumption that all ob-
jects of the inner relation referenced in one hash chain can
fit into the portion of memory not used by the hash table.

Shapiro [31] analyzes sort-merge and three hash-based
algorithms and also provides a discussion of various
memory-management strategies. Again, no experimental
data is provided to validate the model.

Lieuwen, DeWitt and Mehta [22] analyze parallel ver-
sions of Hash-Loops and Hybrid-Hash pointer-based join
algorithms and compare them to a new algorithm, the
Probe-child join algorihtm. Their work also builds upon
[33] but has a different emphasis from our work in that we
develop a validated model for a shared memory architec-
ture based upon the memory mapping approach.

Martin, Larson and Deshpande [24] present a validated
analytical model for a multi-processor, single disk situa-
tion in a shared-memory based traditional system. Their
model assumes perfect inter-process parallelism and per-
fect processing-I/O parallelism. We make neither assump-
tion in our model.

Our work extends the work in the above papers in a
number of ways: by allowing multiple processors and mul-
tiple disks (resulting in further algorithm design decisions
in the course of parallelizing the standard join algorithms
mentioned here), by drawing a distinction between private
and shared memory, and of course by using a memory
mapped environment. The parallelization used in our al-
gorithms has been influenced by ideas presented in [30].
In addition, our analysis is quantitative as opposed to the
qualitative analysis in other models; our model has mea-
sured parameters that quantify the environment in which
the join occurs, such as how disk I/O is affected by all as-
pects of the join.

3 Modelling

Our model has as components a number of processes,
each having its own segment with a private area of memory
and a shared area of memory accessible to all processors
through which communications takes place, and a number
of disks allowing parallel I/O. The parameters of the model
are discussed below and shown graphically as:
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The number of processes used by a given algorithm is
P. The time for a context switch between processes is CS.
The number of bytes of private memory used by a process
Pi is MPi . The number of bytes of shared memory available
for use by the P processes is MSH . The size of a block or
page of virtual memory, in bytes, is B.

The number of parallel I/O operations is D. This param-
eter usually refers to the number of disk controllers, not
disks, since there is a one-to-many relationship between
controllers and disks. When simultaneous requests arrive
for the same disk, we leave unspecified the disk arbitra-
tion mechanism. Alternatives include denying algorithms
simultaneous access, serializing overlapping requests, and
a priority scheme for simultaneous requests.

Memory transfer times are given in the form of com-
bined read/write times since all segment transfers move
data using assignment statements, which read and then
write. Furthermore, these transfer times can be used even
if the architecture implements an explicit block move in-
struction that does not directly involve process registers; in
this case, the transfer time may be parameterized by the
length of the move since a block move may be more effi-
cient for longer transfers. The transfer times, per byte, are
MTsp, shared memory to private, MTss, shared to shared,
MTps, private to shared, and MTpp, private to private.

3.1 Disk Transfer Time
Modelling disk transfer is complex since it is a function

of the access pattern due to the inherent sequentiality of
the components of a disk access. The nature of join algo-
rithms is such that data is clustered into contiguous bands
on the disk during certain parts of an algorithm. Intense
I/O occurs in a band followed by similar I/O occurring in
the next band and so on. This clustering is modelled by
measuring the average cost (per block) of sequentially ac-
cessing bands in which random access occurs, over a large
area of disk. The size of the disk area is irrelevant; it only
has to be large enough to obtain an average access time for
the band size. The layout of data on disk is always given to
explain the band size in our algorithms.

In general, the disk transfer time function, dtt, has two
arguments: the unit of data transfer, and the span, in blocks,
over which random disk accesses take place, i.e. the size
of the band. In our work, the first argument is always B,
the virtual memory page size; therefore, the first argument
is dropped from all of our subsequent formulas. Fig. 1(a)
shows the average time to transfer a block (4K in our ex-
periments) to or from disk with respect to a given band

size. When the band size is one block, access is sequen-
tial; when the band size is greater, access is random over
that area. Thus, average time increases as the band size
increases. One curve is for random reading in a band (no
duplicates); the other curve is for a random writing in the
band (no duplicates). One might expect the read and write
times to be identical. However, while a read page fault
must cause an immediate I/O operation, writing dirty pages
can be deferred allowing for the possibility of parallel I/O
and optimization using shortest seek-time scheduling algo-
rithms. Thus, writes, on average, cost less than reads. The
two curves are used to interpolate disk transfer times for
reading, dttr, and writing, dttw, respectively. Both dttr and
dttw are machine dependent and must be measured for the
specific machine/disk combination doing the join.
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Figure 1: Measured Machine Dependent Functions
(Sequent Symmetry/Dynix using Fujitsu M2344K and
M2372K disk drives)

3.2 Memory Mapping Setup
The cost of three fundamental memory mapping opera-

tions, namely, creating a mapping for a new area of disk,
establishing a mapping to an existing area of disk, and de-
stroying a mapping as well as its data in an existing area of
disk, is modelled by three measured functions, newMap,
openMap and deleteMap. Each of these functions takes
the size of the mapping as an argument.

Fig. 1(b) shows the measured values of these three func-
tions for our experiments. All mapping costs increase with
size since constructing the page table and acquiring disk
space increases linearly with the size of the file mapped.
New mappings are more expensive than existing mappings
since new disk space must be acquired. Deleting is the
least expensive as only the storage for the page table and
disk space need to be freed.
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4 Parallel Pointer-Based Join Algorithms
We design and analyze the parallel pointer-based ver-

sions of nested loops, sort-merge, and a variation of Grace
join algorithms. We consider the joining of a relation
R with S. In pointer-based join algorithms, the join at-
tribute is a virtual pointer to objects in S, which is ideal
for our memory mapped environment and results in signif-
icant performance advantages. A virtual pointer provides
an implicit ordering of objects in S, which is exploited to
eliminate the usual sorting or hashing of S in sort-merge
and hash-based joins, respectively.

We assume that S is initially partitioned on D disks
into equal-sized partitions S1 ��������� SD and that the contain-
ing partition for an object of S can be computed, in time
map, from a pointer to that object. We further assume that
the join attributes are randomly distributed in R, which is
also divided into equal-sized partitions R1 ��������� RD. Finally,
each relation is managed by a process (Rproc and Sproc)
which is aware of the structure of the relations, and Rproc
is capable of carrying out the join itself.

The following parameters are defined for various rela-
tions and their subsets.

�
X
�
denotes the number of objects

in X and PX is the number of pages in X . r� s denote the
size of a single object in R and S respectively.

For our algorithms, private memory is viewed as being
divided into D pieces, where the ith piece is associated with
partition Ri. We describe the algorithm as it progresses on
the ith piece, with the understanding that work on the re-
maining D � 1 pieces is progressing in an analogous fash-
ion in parallel. Our experiments use D processors each for
R and S to achieve maximum parallelism.The partitions of
R are further divided into sub-partitions based on the parti-
tions of S to which the join attributes point. The subset of
Ri with join attributes residing in partition S j is called Ri � j.
RS j denotes the set of all objects in R that have pointers

to objects in S j, i.e., RS j 	�
 D
i � 1 Ri � j. This substructure is

illustrated in the figures for subsequent algorithms. For a
given i, the Ri � j sub-partition may have some skew in size
since sub-partitions may contain more references to some
S j and fewer to others; the amount of skew is defined as
skew 	 max j  �Ri � j � �����Ri

� �
D ��� . Skew is important as it af-

fects the performance of certain algorithms.
A few more necessary parameters are defined with each

specific algorithm. Finally, since every algorithm forms
and outputs the same join, we do not count the time to do
this in the analysis, nor do we assume that the join results
are generated in any particular order.

In our analyses of join algorithms we compute quanti-
ties of time that can be summed to give the total elapsed
time for Rproci. Since there is little or no contention dur-
ing the D-fold parallelism, the total elapsed time for Rproci
also represents the total time for the entire join.

While it is convenient to speak of data being read or
written in the algorithms, input and output is not explic-
itly requested by our algorithms. When we speak of read-
ing a block of data, the implementation actually accesses
a location in virtual memory mapped to that block. If the
block is not in primary memory, it is read in by means of
a page fault; otherwise, no disk access takes place. Sim-
ilarly, when we speak of writing a file, no explicit action
occurs in the implementation; the writing of a (dirty) block
of data takes place when that page is replaced by the oper-

ating system. These actions are similar to what occurs in an
explicitly managed buffer pool, where objects are fetched
from already read buffers and written only when the buffer
is written, albeit with more user control.

5 Parallel Pointer-Based Nested Loops
Nested loops join works by sequentially traversing R,

and for each R-object, accessing the S-object pointed to
by the join attribute; R is called the outer relation and S
the inner. The resulting random accesses to S make nested
loops inefficient. A naive parallel version may partition
R and S so that the Ri partitions can perform the join in
parallel, accessing different S j partitions simultaneously.
However, parallelism in this case is inhibited by contention
when several Ri reference the same S j; this contention can
be reduced or eliminated.

In the traditional nested loops join, the smaller of the
two relations is used as the inner relation so that it can be
kept in the buffer pool. In our system, S is always the inner
relation unless S objects contain back pointers to R.

5.1 Algorithm
For each partition Ri in parallel, the algorithm operates

in two passes. In pass 0 (see fig. 2), Ri is read, one ob-
ject at a time, into the private memory of Rproci. In terms
of actual I/O, this translates to reading Ri in chunks of the
virtual memory page size, B. In fig. 2, an object is repre-
sented by a tuple

�
MAP

�
sptr � � sptr � , where MAP

�
sptr � is

the S partition containing the object pointed to by sptr. For
each object in Ri, the S partition is computed from the join
attribute and the object is copied (written) to a sub-partition
inside of a temporary area RPi, which is mapped onto the
same disk as partition Ri. Hence, all the R-objects in Ri
that point to an object in S j are grouped together in sub-
partition RPi � j. This sub-partitioning (mostly) eliminates
disk contention in the next pass.

As an optimization, the objects in Ri that point to ob-
jects in Si are immediately joined by extracting the join
pointer, and having Sproci read the corresponding S ob-
ject. Sproci dereferences the join attribute resulting in a
read of the page of Si containing the object, if that page
is not already in memory, and makes the S object avail-
able for the join by putting it into shared memory. Rproci
then does the join. As a further optimization, the requests
for objects from Si are grouped into a buffer of size G to
reduce context switches between Rproci and Sproci.

Instead of putting RPi in its own segment, managed by
another process, it is made part of the storage for Rproci.
That is, Ri is located at the lowest address of the Rproci
segment and storage for RPi is located after the storage for
Ri. Hence, both Ri and RPi are mapped to the private mem-
ory of Rproci. This organization eliminates the costs of
segment-to-segment transfer, namely copying data through
shared memory. It also eliminates the cost of creating and
managing an additional process for RPi. The drawback of
this optimization is that the maximum size of Ri is approx-
imately half of the maximum address space size.

Pass 1 (see fig. 2) eliminates disk contention by stagger-
ing access to Si through a series of D � 1 phases without
synchronizing the phases. In phase t (t 	 1 � 2 ������� D � 1),
RPi � offset � i � t � is joined with Soffset � i � t � , where offset

�
i � t � 	���

i � t � 1 � mod D ��� 1. Rproci loops over objects in
RPi � offset � i � t � in private memory; for each one, it extracts the
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Figure 2: Parallel Pointer-Based Nested Loops

join pointer and asks Sprocoffset � i � t � for the corresponding S
object. Due to the offset, S j is only accessed by one Rproci
in any one phase, assuming no skew. In the presence of
skew, there are different numbers of objects in each RPi � j,
so there may be some contention when multiple Rproci ac-
cess the same S j.

Since we assume a random distribution of join at-
tributes, skew is very close to 1.0. As a result, no syn-
chronization is used after each phase of pass 1 for all the
Rproci; any contention is insignificant, as was verified by
running experiments with synchronization after each phase
of pass 1. In the best case, there was a 0.5% decrease in I/O
and total time due to reduced contention.

5.2 Parameter Choices
MRproci should be large enough to hold, in pass 0, at

least one block of the input Ri and at least one block for
each RPi � j. Since Si is being read randomly, MSproci should
be as large as possible. G should be large enough to avoid
many context switches between Rproci and Sproci, but
small enough so that the volume of pending requests does
not force important information out of memory. The im-
plementation used a value of B for G.

5.3 Analysis

Given
�
Ri
�
	
�
R
� �

D and
�
Ri � i � 	

�
Ri
� �

D � skew 	
�
R
� �

D2 �
skew, for the largest of Ri � i, then

�
RPi

�
	

�
Ri
� � �

Ri � i � 	���
R
� �

D � � 1 � skew
�
D � . Ri is not adjusted by skew since

there is no synchronization between phases in this algo-
rithm; in essence, the skew in RPi � j is compensated for by
the additional parallelism resulting from the lack of syn-
chronization among the Rproci between passes 0 and 1.

In pass 0, Ri is read sequentially, RPi is written (mostly)
randomly, and Si is read randomly. The disk layout of the
three partitions is:

Ri Si RPi

PRPiPSi
PRi

Since each partition is accessed, the band size of disk arm
movement, BandSizepass0, in the worst case, is the total
size of all partitions:

PRi � PSi � PRPi 	
PR

D
� PS

D
�
�

PR

D
� PR

D2
� skew � �

As well, since random reads and writes are interspersed
on the same disk, all dtt costs are for random I/O (i.e.,
it does not matter that some objects are read sequen-
tially). The disk transfer times for Ri and RPi are PRi

�
dttr

�
BandSizepass0 � and PRPi

� dttw
�
BandSizepass0 � .�

Ri � i � S-objects are read randomly from Si, one object
at a time, during the join, but some of those objects may
be in memory already when requested. We use a result
of Mackert and Lohman [23] to approximate the number
of page faults, which corresponds to disk transfers. Their
paper derives the following approximation: given a relation
of N tuples over t pages, with i distinct key values and a b-
page LRU buffer, if x key values are used to retrieve all
matching tuples, then the number of page faults is

Ylru
�
N � t � i � b � x � 	�� t

�
1 � qx � if x � n

t � � 1 � qn � � p
�
x � n � qn � if x 	 n

where n 	 max  j : j � i � t � 1 � q j �
� b � and q 	 1 � p 	�
1 � 1

�
max

�
t � i ��� N � min � t � i � .

Assuming the references to S are randomly distributed
in R, the disk transfer time for Si in pass 0 is

Ylru

� �
RSi

� � PSi
� �RSi

� � MSproci

B
� �Ri � i � � � dttr

�
BandSizepass0 � �

In pass 1, RPi is read sequentially and Si is read ran-
domly. Since only Si and RPi are used, the band size of
disk arm movement, in the worst case, is the total size of
both partitions: BandSizepass1 	 PSi � PRPi. As well, since
random reads and writes are interspersed on the same disk,
all dtt costs are for random I/O. The disk transfer times for
RPi and Si are PRPi

� dttr
�
BandSizepass1 � and

Ylru

� �
RSi

� � PSi
� �RSi

� � MSproci

B
� �RPi

� � � dttr
�
BandSizepass1 � �

Further, in pass 0, each object of Ri is moved once, ei-
ther to RPi or to shared memory for the join, and appropri-
ate objects of Si are moved to shared memory for the join.
The transfers from Ri to RPi or shared memory are simple
memory transfers among areas of Rproci’s memory due to
the organization of Rproci’s memory (see section 5.1). The
corresponding data transfer cost is:�
RPi

� � r � MTpp � �
Ri � i � � � r � sptr � s � � MTps.

The transfers from Si require a data movement from
Sproci’s private memory to shared memory so that an ob-
ject can be accessed by Rproci; this requires two con-
text switches, from Rproci to Sproci and back again so
that Sproci can perform the transfer. To optimize con-
text switching, shared memory of size G is used (see sec-
tion 5.1). During the sequential pass of Ri, objects for Ri � i
and their join attributes (i.e., the S-pointers) are placed into
this buffer until there is only room for the corresponding Si
objects. While the S-pointer is available in the R object, it
is copied so that Sproci does not have to know about the
internal structure of R objects. The buffer is then given
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to Sproci to copy the corresponding objects into the re-
maining portion of the buffer. The objects in the buffer can
now be joined. The buffer reduces the number of context
switches to Sproci. The alternative is to join each individ-
ual R object when found during the sequential scan, which
results in a context switch to Sproci for each object.

In pass 1, each object of RPi is moved once to shared
memory, and appropriate objects of Si are moved to shared
memory for the join in a total time of

�
RPi

� � � r � sptr � s � �
MTps. The buffering technique employed in pass 0 is also
used in pass 1 to retrieve S-objects. The context switching
costs for pass 0 and 1 are g

���
Ri � i � � and g

���
RPi

� � respectively,
where g

�
h � 	 2 � CS � � h ��� G � �

r � sptr � s ����� . The cost of
mapping the join attributes to their S partitions in pass 0 is�
Ri
� � map.
Finally, the setup cost (see section 3.2) for mapping

Ri, Si and RPi is D � � openMap
�
PRi � � openMap

�
PSi �� newMap

�
PRPi ��� . The setup time is multiplied by D since

manipulating a mapping is a serial operation.

6 Parallel Pointer-Based Sort-Merge
In nested loops, the random access of S slows down the

join. Sort-merge changes the random access to a single
sequential scan of S, resulting in a significant performance
gain. While Shapiro’s sort-merge [31] assumes only two
passes, we permit multiple passes, writing out full records
at each pass. Also, as noted earlier, the use of S-pointers as
the join attribute makes sorting of Si unnecessary.

6.1 Algorithm
The first two passes of the parallel sort-merge algorithm

are the same as in parallel nested loops (see sec. 5.1) except
for one difference; in nested loops, Ri � i and RPi � j are joined
with Si, whereas in sort-merge, Ri � i and RPi � j are written
out to RSi . Fig. 3 shows these two passes for sort-merge.
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RPi RSi
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e

h

RprocD (i,h), ...

(1,g), ...

Pass 1Pass 0

i

f

c
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(D,i)

Figure 3: Parallel Pointer-Based Sort-Merge

Once the RSi’s have been formed, the sequential sort-
merge algorithm is executed on each partition. The algo-
rithm proceeds by first sorting, in parallel, all RSi with re-
spect to the join attributes to allow sequential access to Si.
Sorting of RSi is done using multi-way merge sort, with the

aid of a heap and with intermediate runs stored on disk. In
the final pass, Si is read in sequentially to perform the join.

As in nested loops, data movement is optimized by com-
bining several partitions in Rproci’s segment. That is, Ri is
located at the lowest address of the Rproci segment, stor-
age for RPi is located after that, and then all partitions for
the RS j . Hence, all these partitions are in the private mem-
ory of Rproci. The saving in data transfers through shared
memory is significant and is possible since RPi and the RS j

are temporary areas where the data is manipulated as ob-
jects without the need to dereference internal pointers. The
drawback is that the maximum size of Ri is approximately
D � 1 times less than the maximum address space size. If
this optimization poses a problem, the RS j can be separate
segments; data can be copied to them through shared mem-
ory using a buffer.

Our design and analysis introduce a number of param-
eters, some chosen by the programmer, and some speci-
fied by the implementation. The programmer must choose
IRUN, the length of a run created from unsorted data from
pass 1, and NRUN, the number of runs to be merged in
a merging pass. In pass 2, IRUN R-objects are read in
and a heap of pointers to these objects is created. Heap-
sort is applied to this heap of pointers and then the sorted
list of pointers is used to sort, in place, the corresponding
R-objects. The resulting sorted run of IRUN R-objects is
(eventually) written out to disk. These actions are repeated
to sort successive runs until all of RSi has been processed.

On subsequent merging passes, groups of NRUN sorted
runs are merged using delete-insert operations on a heap
of NRUN pointers. The heap always contains pointers to
the next unprocessed element from each sorted run; when
a pointer is deleted from the heap, the corresponding ob-
ject is moved to the output run, and a pointer to the next
object from the input run that contained the moved object
is inserted into the heap.

On the last merging pass, instead of writing out the
merged R-objects, the corresponding objects from Si are
read sequentially and the join computed. The reading of
the objects from Si is accomplished, as in nested loops, by
means of a shared memory buffer of size G.

6.2 Parameter Choices

IRUN is chosen to be the maximum so that an entire
run, plus space for the heap of pointers, fits in memory,
i.e., IRUN 	�� MRproci

���
r � hp �
	 where hp is the size, in

bytes, of an element in the heap of pointers.
Ideally, merging of runs requires at least one page of

memory for each run; otherwise excessive thrashing oc-
curs since pages are replaced before they are completely
processed. In reality, with this minimum memory, pages
are replaced prematurely since the LRU paging scheme
makes the wrong decisions when replacing a page during
the merging passes. That is, when objects in an input page
have been processed, the page is no longer needed, but it
must age before it is finally removed; during the aging pro-
cess, a page that is still being used for the output runs gets
paged out, resulting in additional I/O. In our implementa-
tion, we avoid the problem by reducing the value of NRUN,
which is chosen to be MRproci

� �
3 � B � during all but the last

pass (denoted NRUNABL), and MRproci

���
2 � B � during the
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last pass. In other words, memory is underutilized to com-
pensate for this anomaly so that the program behaves more
consistently. The amount of underutilization is based on
an approximation of the working set of the program during
these passes.

6.3 Analysis

Given
�
Ri
�
	

�
R
� �

D and
�
Ri � i � 	

�
Ri
� �

D � skew, for
the largest of Ri � i, then

�
RPi

�
	

�
Ri
� � skew � �

Ri � i � 	���
R
� � skew

�
D � � 1 � 1

�
D � . Ri is adjusted by skew since there

is synchronization between phases in this algorithm, there-
fore the worst case must be considered for each individual
pass.

In pass 0, Ri is read sequentially, RPi is written (mostly)
randomly, and RSi is written sequentially. Disk layout is:

Ri Si RSi
RPi Mergei

PRi PSi PRSi
PRPi

PRSi

resulting in the band size of disk arm movement,
BandSizepass0, in the worst case, of

PRi � PSi � PRSi
� PRPi 	

PR

D
� PS

D
� PR

D
�
�

PR

D
� PR

D2 � � skew

The disk transfer times for Ri, RSi and RPi are PRi
�

dttr
�
BandSizepass0 � , PRSi

� dttw
�
BandSizepass0 � and PRPi

�
dttw

�
BandSizepass0 � , respectively.

In pass 1, RPi is read sequentially, and RSi is written
sequentially, giving BandSizepass1 	 PRSi

� PRPi. The disk
transfer times for RSi and RPi are PRSi

� dttw
�
BandSizepass1 �

and PRPi
� dttr

�
BandSizepass1 � respectively. All dtt formu-

las are for random I/O due to wide fluctuations in the disk
arm between regions read or written sequentially.

In pass 0, each object of Ri is moved once within
Rproci’s segment, either to RPi or to RSi , at a cost of�
Ri
� � r � MTpp. In pass 1, each object of RPi is moved once

within Rproci’s segment to the appropriate RSi at a cost of�
RPi

� � r � MTpp. The mapping cost for pass 0, which gener-
ate an S partition from an S-pointer, is

�
Ri
� � map.

In pass 2 (the heap-sorting pass), runs of size IRUN
objects from RSi are sequentially read in and sorted in
place. Since there is no explicit writing, the previous
sorted run is written back by the operating system as
the pages age with mostly random writes. This results
in a disk band size that is twice the size of a sort run:
2 � � r � IRUN

�
B � . The disk transfer times for reading RSi and

writing back the sorted runs are PRSi
� dttr

�
2r � IRUN

�
B � and

PRSi

� dttw
�
2r � IRUN

�
B � , respectively.

We define compare to be the amount of time Rproci
requires to compare two elements in a heap of pointers to
R-objects, stored in memory. Similarly, swap is the amount
of time to swap two heap elements stored in memory, and
trans f er is the amount of time to move an element to or
from the heap. This does not count operations necessary to
restore heap discipline; those are computed separately.

In order to heap-sort each individual run, an array
of pointers to the IRUN R-objects in memory is con-
verted into a heap using Floyd’s heap construction al-
gorithm (see [16, 15]). The heapsort method outlined
in [29] is then used with a modification suggested by
Munro that allows the heapsort to complete, in the
average case, with approximately N logN comparisons
and transfers. The creation of the heap takes time
1 � 77 � �RSi

� � � compare � swap
�
2 � � �

RSi

� � trans f er while
the cost of heap-sorting the heap by repeated deletion of
minima is

�
RSi

� � log IRUN � � compare � trans f er � . A fur-
ther cost of

�
RSi

� � r � MTpp is required to move the actual
R-objects in place based on the sorted list of pointers.

The choice of IRUN and NRUNABL in turn determines
NPASS, the number of merging passes, and LRUN, the
number of runs on the last pass. The value of NPASS is

max � j : j
�

1 �
� �

Ri
�

IRUN � � NRUNABL � j � 1 � � NRUN �
and that of LRUN is � �Ri

� ���
IRUN � � NRUNABL � NPASS � 1 ��� .

In the third and subsequent passes, groups of NRUNABL
(or LRUN in the last pass) input runs are read in,
merged into one, and written out. The storage for RSi
and Mergei alternate as source and destination of these
runs. The disk band size during all but the last pass
is BandSizeABL 	 PRSi

� PRPi � PMergei , and during the
last merging/joining pass is BandSizeLast 	 PSi � PRSi

��
PRPi � PMergei � � � NPASS � 1 � mod 2.

The disk transfer time, except for the last pass,
for reading and writing RSi and Mergei NPASS � 1
times are PRSi

� dttr
�
BandSizeABL � � � NPASS � 1 � and

PRSi
� dttw

�
BandSizeABL � � � NPASS � 1 � , respectively. Dur-

ing the last pass, respective I/O costs for RSi and Si are
PRSi

� dttr
�
BandSizeLast � and PSi

� dttr
�
BandSizeLast � .

During the merge, except for the last pass, the
delete-insert operation [15, p. 214] is used on a heap
of size NRUNABL and the heap operations take time�
g
�
NRUNABL � � 2 � trans f er � � �RSi

� � � NPASS � 1 � , where
g
�
h � 	

�
2 � compare � swap � � ��� h � 1 � � k � �

h
�
2 � � 2k � � h

and k 	
�
logh � � 1. The size of the heap during the

last merge pass is LRUN and the heap operations take
time

�
g
�
LRUN � � 2 � trans f er � � �RSi

�
. The respective data

transfer cost during the NPASS � 1 merge passes and
the last merge pass are

�
RSi

� � r � MTpp
� � NPASS � 1 � and�

RSi

� � � r � sptr � s � � MTps, with the corresponding context
switching time of 2 � CS � ���RSi

� � �
G
���

r � sptr � s � � � � Fi-
nally, the setup cost for mapping Ri, Si, RSi , RPi and Mergei
is D � � openMap

�
PRi � � openMap

�
PSi � � newMap

�
PRSi

� �
newMap

�
PRPi � � newMap

�
PSi ��� . The setup time is mul-

tiplied by D since manipulating a mapping is a se-
rial operation. An additional cost of

�
deleteMap

�
PSi � �

newMap
�
PSi ��� � � NPASS � 1 � is incurred in all but the last

merge passes to swap the source and destination areas.

7 Parallel Pointer-Based Grace
Sort-merge improves the performance of the join by

sorting Ri by the S-pointer, which allows sequential read-
ing of Si. However, sorting is an expensive operation.
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Hash-based join algorithms replace the sort with hashing
to improve performance further. As a representative exam-
ple of the hash-based join algorithms, we have chosen to
model a parallelized pointer-based version of the Grace al-
gorithm. Modelling of other more modern hash-based join
algorithms will be done in future work.

As with sort-merge, the ordering property of the S-
pointers makes it unnecessary to hash Si. By carefully de-
signing the hash algorithm, it can be ensured that each hash
bucket contains monotonically increasing locations in Si,
so that Si can be read sequentially.

7.1 Algorithm
The first two passes of the Grace algorithm, shown in

fig. 4, are the same as in parallel nested loops, except for
one difference; in nested loops, R-objects are joined with
Si, whereas in Grace, the join attributes (i.e., the S-pointers)
from R-objects are hashed into one of K sub-partitions (or
buckets) that make up RSi . The value of K is chosen by
the programmer based on the amount of memory available.
We refer to the jth sub-partition of RSi as BSi � j, i.e., RSi 	

 K

j � 1 BSi � j.

B � SD � x �

B � S1 � x �
B � S1 � 1 �

B � Si � x �
B � Si � 1 �

B � SD � 1 �

B � S1 � k �

B � Si � k �

B � SD � k �

RPi � 1
RPi �D

(D,f)

(1,d)

(i,e)

(1,d), ...

(D,f), ...

Rproci

RPi

RP1 � i
RP1 �D

Ri

(1,a)

(D,c)

(i,b)
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(D,c), ...
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Rproc1

RPD � 1
RPD � i(i,h)
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(1,g), ...

(i,h), ...RprocD

Pass 0 Pass 1

Figure 4: Parallel Pointer-Based Grace

In pass 1, Rproci reads Ri � j (for all j
�
	 i), one R-object

at a time, and hashes each object into one of the K sub-
partitions of RS j . As before, the reading and hashing of
Ri � j’s in pass 1 takes place in phases to eliminate contention
for the disks. At the end of pass 1, each RSi contains K
sub-partitions with hashed R-objects. The hash function
is chosen so as to cluster R-objects by the value of their
join attributes. Therefore, BSi � j � j 	 1 ������� K � 1, contains
R-objects with join attributes smaller than that of any R-
object in BSi � j � 1.

In pass 1 � j ( j 	 1 � 2 ������� K), for every i in parallel, BSi � j
is read in, and the value of the join attribute in each object
is used as input to another hash function that further refines
the partitioning given by the first hash function. The range
of this hash function is T SIZE, a parameter chosen by the
programmer. Once all of BSi � j has been hashed into this in-
memory hash table, the table is processed in order. Com-
mon references to objects in Si (i.e., references that result

in a collision when hashed) are in the same hash chain. If
we assume that there are no more than MSproci

�
s different

references to objects in Si in any one hash chain during the
processing of that hash chain, all objects from Si needed
during this processing can fit in memory; hence each ob-
ject referenced from S need only be read once in order to
perform the join. The reading of the objects from Si is ac-
complished using a shared memory buffer of size G.

7.2 Parameter Choices
During pass 1 � j, j 	 1 � 2 ������� K, Rproci reads each R-

object in BSi � j into a memory resident hash table. The value
of K should be chosen such that each BSi � j along with its
associated hash table overhead fits entirely in memory.

T SIZE should be small enough to avoid excessive hash-
table overhead due to underutilization of memory and large
enough to ensure short individual hash chains. Theoret-
ically, the minimum amount of memory that needs to be
made available to each Rproci, in pass 0, to avoid thrashing
is D � ���

f uzz � �Ri
� � r � B � blocks, where f uzz makes room

for the hash table overhead. In reality, even this threshold
memory results in thrashing, because the working set for
the algorithm is greater than the theoretical threshold mem-
ory and the LRU paging scheme then makes the wrong de-
cision, removing useful pages prematurely. See [31, 34]
for more discussion on this problem. In the next section,
we derive an approximation for the amount of extra I/O
that takes place when memory is insufficient.

7.3 Analysis
The disk band sizes during pass 0 and pass 1 are

BandSizepass0 	 PRi � PSi � PRSi
� PRPi and BandSizepass1

	 PRSi
� PRPi, where PRPi is the same size as in sort-merge

because there is synchronization between phases. Pass 0
involves reading objects from Ri, one object at a time, and
writing each object to either RPi or to one of the K buckets
in RSi . The corresponding costs are PRi

� dttr
�
BandSize0 � ,

PRPi
� dttw

�
BandSize0 � and

�
PRi � i � K � � dttw

�
BandSize0 � .

The number of pages written to RSi has been increased by
K to account for the fact that objects read from Ri � i are
hashed into K buckets in RSi . The additional costs incurred
in pass 0 include

�
Ri
� � map to map the join attributes to

their corresponding S partition,
�
Ri � i � � hash to hash the Ri � i

objects into one of K RSi buckets and
�
Ri
� � MTPP to move

the Ri objects in private memory to either RPi or RSi .
We use an urn model to derive an approximation for the

amount of extra I/O that takes place due to lack of memory
in pass 0. In pass 0, R-objects from Ri are placed in one of
RPi � j or in one of the K buckets of RSi . Once hit, a bucket
page is replaced when there are MRproci

�
B references to

newer pages before it is hit again; the probability of hash-
ing t further objects without a second hit is

�
1 � 1

�
K � t . At

any given time, some of the pages in memory are partially
filled or read pages (current pages) and some pages have
been completely processed or filled (fill events) but which
stay around since they are recently accessed. We assume
that the D current pages for Ri and RPi � j stay in memory
until processed completely; these pages are processed at a
much faster rate than the pages in RSi .

For convenience, we divide the hashing of objects after
a hit into epochs; the first α0 objects, the next α1, and so on.
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The number of fill events that have occurred at the begin-
ning of epoch q is a random variable which we approximate
by a constant depending on q. Since the page replacement
algorithm prefers clean pages over dirty pages, we ignore
the fill events caused by the processing of Ri. The fill rate
for RPi � j is

� �
D � 1 � � �B � � , and for RSi is

�
1
���

K � �B � ��� , the
latter being negligible. Therefore, the number of fill events
is
�
H j
� � D � 1 � � �B � � , where H j 	 ∑ j � 1

n � 0 αn is the number of
objects hashed at the beginning of epoch j.

The probability that at most
�
H j
� � D � 1 � � �B � � � D

buckets are not hit by the beginning of the epoch (denoted
p j) multiplied by the probability that a page gets hit again
during epoch j, denoted y j, is the probability that the page
is not present in memory during a second hit in epoch j.
Summing over all epochs and multiplying by

�
Ri � i � gives an

approximation to the expected number of times a page of
RSi gets replaced prematurely.

The probability p j can be computed by reference to
Johnson and Kotz [19, p.110], who state that the probabil-
ity, Pr � X 	 k � , of exactly k urns being empty after n balls
are randomly placed into m urns is�

m
k
� � � 1 � k

m
� n � m � k � 1

∑
j � 0

�
m � k

j
� � � 1 � j

�
1 � j

m � k
� n

�

Every premature replacement necessitates one extra
write (to replace the page) and one extra read (when the
page is referenced again) for a total cost of reading and
writing of

�
Ri � i � � ∑ j

�
1
�
p j
� y j � blocks. For our computa-

tions we used size K for the first epoch and 1 for the rest.
In pass 1, objects in RPi � j are read, one object at a

time, and each object is hashed into one of the K buck-
ets in RS j . The costs of reading RPi and writing RSi are
PRPi

� dttr
�
BandSize1 � and

�
PRPi � K � � dttw

�
BandSize1 � , re-

spectively. Once again, the number of pages written to
RS j ’s has been increased by K. It takes a further time of�
RPi

� � MTPP to move the objects in private memory.
After pass 1, the subsequent reading of the partitioned

RSi , one bucket at a time, and the corresponding Si objects
requires time

�
PRSi

� PSi � � dttr
�
PRSi

���
K
�
2 � . The band size

for dttr is chosen to be half the size, in blocks, of the ob-
jects that fit in the hash table. This is done to approximate
the actual behaviour, which is to read sequentially objects
from a sub-partition of RSi followed by the corresponding
objects in Si and so on.

Each object in RSi is hashed once during the processing
of each bucket, for time

�
RSi

� � hash. The cost of transfer-
ring objects to shared memory is

�
RSi

� � MTPS
� � r � sptr � s �

with the corresponding context switching time of 2 � CS ����
RSi

� ���
G
���

r � sptr � s ��� � .
Finally, the setup costs for mapping Ri and Si for

reading, creating the new mappings for RSi and RPi
in pass 0 and setting up RSi for reading in pass 1
is D � � openMap

�
PRi � � openMap

�
PSi � � newMap

�
PRSi

�
PRPi � � openMap

�
PRSi

��� .
8 Model Validation

To validate the model and the analysis presented ear-
lier, experiments were run that performed full joins on two
relations with 102,400 objects each. The objects in each

relation were 128 bytes. R and S were partitioned across 4
disks with one R and one S partition on each disk.

All experiments were run on a Sequent Symmetry with
10 i386 processors, which uses a simple page replacement
algorithm (see [11] for details of our test bed). The file sys-
tem was adjusted so all virtual memory I/O was done in 4K
blocks. The execution environment was strictly controlled
so the results were not influenced by any outside activity.
The amount of memory for the experiment’s address space
and the global cache were tightly controlled.

Fig. 5 shows the predicted and measured elapse times
for running the various join algorithms with varying
amounts of memory available. The discontinuities in the
sort-merge graph occur when additional merging phases
are required. The curve in the Grace graph at low memory
levels results from thrashing caused by the page replace-
ment algorithm.
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Figure 5: Experimental Results

As is evident from the graphs, our model does an ex-
cellent job of predicting performance for the various join
algorithms in almost all conditions. In particular, there is a
close match between prediction and actual performance for
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nested loops and sort-merge. All the experiments were re-
peated several times to make sure that the results were con-
sistent, accurate and reproducible. For Grace, our approx-
imation for I/O caused by thrashing at low memory levels
is reasonably accurate; there is scope for further refinement
of this approximation. A major part of the difference be-
tween prediction and actual behavior at low memory levels
comes from the overhead introduced by the particular re-
placement strategy used by the Dynix operating system.
Modelling this aspect of the page replacement scheme will
be done in future work.

9 Conclusions and Further Work
We have designed and validated a quantitative analytical

model for database computing in a particular kind of mem-
ory mapped environment. We have successfully used our
model to make accurate predictions about the real time be-
haviour of three different parallel join algorithms, namely,
nested-loops, sort-merge and a variation of Grace. Future
studies with the model will include speedup and scaleup
experiments, changing the nature of the joining relations
and a comparative analysis of various algorithms. Our
methodology allows the use of virtual pointers as the join
attributes, which in turn introduces significant performance
gain by eliminating the need to sort/hash one of the two
relations. Our analysis of the join algorithms also high-
lighted an inherent drawback in single level stores: the
lack of control over buffer management on the part of the
database application results in incorrect decisions being
made at times by the underlying page replacement strat-
egy. While accepting this inefficiency, we have demon-
strated two approaches to achieving predictable behaviour,
an essential property in a database system. With single-
level stores becoming more common, it is our hope that
future research and development in operating system ar-
chitecture will make it feasible for database applications to
exercise more control over the replacement strategies used
(see [7]). There is scope for further improvement in the
design of our model, especially in the modelling of the un-
derlying paging behaviour. Future work will involve ex-
tending our model to other memory mapped environments
allowing us to perform comparative studies. It will also be
an interesting exercise to explore the applicability of our
model to traditional join algorithms.
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