
� Database : A Toolkit for Constructing Memory Mapped Databases
Peter A. Buhr, Anil K. Goel and Anderson Wai

Dept. of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Abstract

The main objective of this work was an efficient methodology for constructing low-level database tools that are built
around a single-level store implemented using memory mapping. The methodology allowed normal programming
pointers to be stored directly onto secondary storage, and subsequently retrieved and manipulated by other programs
without the need for relocation, pointer swizzling or reading all the data. File structures for a database, e.g. a B-
Tree, built using this approach are significantly simpler to build, test, and maintain than traditional file structures. All
access methods to the file structure are statically type-safe and file structure definitions can be generic in the type of
the record and possibly key(s) stored in the file structure, which affords significant code reuse. An additional design
requirement is that multiple file structures may be simultaneously accessible by an application. Concurrency at both
the front end (multiple accessors) and the back end (file structure partitioned over multiple disks) are possible. Finally,
experimental results between traditional and memory mapped files structures show that performance of a memory
mapped file structure is as good or better than the traditional approach.

1 Introduction

The main objective of this work was an efficient methodology for constructing low-level database tools that are built
around a single-level store. A single-level store gives the illusion that data on disk (secondary storage) is accessible
in the same way as data in main memory (primary storage), which is analogous to the goals of virtual memory. This
uniform view of data eliminates the need for complex and expensive execution-time conversions of structured data
between primary and secondary storage. A uniform view of data also allows the expressive power and the data struc-
turing capabilities of a general purpose programming language to be used in creating and manipulating data structures
stored on secondary storage. Although a single-level store is an old idea [Org72, IBM78], it has seen only limited use
inside of operating systems, and it is only during the last few years that this idea has begun to receive new attention
and approval from researchers in the database and programming language communities [CFW90, SZ90a, LLOW91].
For complex structures, a single-level store offers substantial performance advantages over conventional file access,
which is crucial to database applications such as CAD/CAM systems, text management and GIS [vO90]. We argue
that the performance advantage of a single-level store is lost if the pointers within it have to be relocated or swizzled
[CAC � 84, Mos90, Wil91].

One way of efficiently implementing a single-level store is by means of memory mapped files. Memory mapping
is the use of virtual memory to map files stored on secondary storage into primary storage so that the data is directly
accessible by the processor’s instructions. Therefore, explicit read and write routine calls are not used to access data on
disk. All read and write operations are done implicitly by the operating system during execution of a program. When
the working set of the data structure can be kept in memory, performance begins to approach that of memory-resident
databases.

To show the efficiency of memory mapping, a memory mapped implementation was constructed, which allowed file
access experiments to be performed between traditional and memory mapped schemes. A tool kit approach was adopted
for the implementation because it allows programmers to participate in some of the design activity; the tool kit is called
� Database. Persistence in � Database is orthogonal because creating and manipulating data structures in a persistent
area is the same as in a program. � Database is intented to provide easy-to-use and efficient tools for developing new
databases, and for maintaining existing databases. While � Database shares the underlying principles of a single-level
store with other recent proposals [CFW90, SZ90a, LLOW91, STP � 87], it offers features that make it unique and an
attractive alternative. � Database is not an object store but it could be used to implement one.

In this paper, a file structure is defined to be a data structure that is a container for user records on secondary storage;
a file structure relates the records in a particular way, for example, maintaining the records in order by one or more keys.
An access method is defined to be a particular way that records are accessed. Examples of different access methods
are: initial loading of records, sequential access of records, keyed access of records.

In Antonio Albano and Ron Morrison, editors, Persistent Object Systems, pages 166–185, San Miniato, Italy, September 1992. Springer-Verlag.
Workshops in Computing, Ed. by Professor C. J. van Rijsbergen, QA76.9.D3I59.

1

2 Motivation

A database programmer is faced with the problem of dealing with two different views of structured data, viz. the data
in primary storage and the data on secondary storage. Traditionally, these two views of data tend to be incompatible
with each other. It is extremely difficult and cumbersome to construct complex relationships among different objects
without the help of direct pointers. However, it is generally impossible to store and retrieve data structures containing
pointers from disk without converting at least the pointers and at worst the entire data structure into a different format.
Considerable efforts, both in terms of programming and execution time, have to be made in such systems to transform
data from one view to the other. In general, these transformations are data structure specific and must be executed each
time the data structure is stored or read from secondary storage. Furthermore, the powerful and flexible data structur-
ing capabilities of modern programming languages are not directly available for building data structures on secondary
storage.

In spite of these rather taxing difficulties, database implementors have traditionally rejected the use of mapped files
and have chosen to implement the lower-level support for databases themselves using traditional approaches. This
rejection is not totally based on the lack of memory mapping facilities. The earliest use of memory mapping techniques
can be traced back 20 years to the Multics system. However Multics provided these facilities in a framework that was
very rigid and difficult to work with. More recent operating systems have begun to provide means for implementing
the idea of a single-level store. See [SZ90a, p. 90] for other reasons why mapped files have not been popular with
database designers. All of these reasons are now addressed by new operating systems [TRY � 87, Sun90], which provide
extended access to the virtual memory, and new hardware, which provides large address spaces (64 bits) and N-level
paging [Mip91, RKA92].

3 Memory Mapping

3.1 Disadvantages of Memory Mapping

Larger Pointers Memory pointersmay be larger than disk offsets, which increases the size of the file structure marginally
increasing access cost.

Non-Uniform Access Speed The apparent direct access of data can give a false sense of control to the file structure
designer. While a file’s contents are directly accessible to the processor, the access speed is non-uniform—when a non-
resident page is referenced, a long delay occurs as for a traditional I/O operation; otherwise the reference is direct and
occurs at normal memory speed. When programming a file structure using memory mapping, certain data structures
will be inappropriate because of their access patterns.

3.2 Advantages of Memory Mapping

Common Data Structure in Primary and Secondary Memory Use of programming-language data structures to or-
ganize the contents of a file eliminates the need to convert to a secondary storage format, which results in code that is
substantially more reliable and easier to maintain. Also, for complex data structures, like an object in a CAD/CAM
system, there is a significant performance advantage.

Reduced Need for Explicit Buffer Management A sophisticated buffer manager is crucial for the performance of
a traditional database system. Furthermore, a file structure designer must be skilled in its use, explicitly invoking its
facilities and pinning/unpinning buffers. On systems without pinning support, double paging is a serious drawback. A
memory mapped access method is less complex because I/O management is largely transparent and is handled at the
lowest possible level (instruction fetch and store).

Simple LocalizationWhile localityof references is crucial for all data structures where access is non-uniform,memory-
mapped access methods can easily take advantage of it by controlling memory layout. Because the data structures on
secondary storage can be manipulated directly by the programming language, tuning for localization is straightforward.

Rapid Prototyping of Access Methods Because a file structure designer works with a uniform view of data, a file
structure can be reliably constructed in a short period of time, using all the available programming-language tools.
Polymorphism, interactive debuggers, execution and storage profilers, and visualization tools are some examples of
directly usable aids.

2

Memory Mapping on a Loaded System It is our contention that memory-mapped access methods can potentially
achieve better performance than traditional database systems, particularly on a shared system. A buffer manager is
often in conflict with other applications, in particular, holding storage that it is not using. On the other hand, memory-
mapped access methods can immediately take advantage of available storage to reduce I/O operations.

Contiguous Address Space Memory mapping provides the file structure designer with a contiguous address space
even when the data on secondary storage is not contiguous. A single object within a given file structure may be split
into several extents on one disk or across multiple disks, and a file structure designer may see nothing difference or
only a sparse address space.

4 � Database Design Methodology

Instead of using reachability [PS-87, MBC � 89], � Database uses the notion of a persistent area, in which data objects
can be built or copied if they are to persist [BZ86, BZ89]. A persistent area is currently implemented by an operating
system file. If data is to be transferred from one persistent area to another, the data must be copied through an interme-
diate area. Alternatively, persistent data can be manipulated directly by migrating an application task to the persistent
area and perform the operations directly on the data. The amount of task migration and/or copying depends on the size
of the data and the amount of work performed when manipulating the data. In all cases, the user interface to the file
structure provides encapsulation to ensure its integrity.

An application may need to access several persistent areas simultaneously. Our design requirements mandate that
support for multiple accessible file structures in a single application be provided, while allowing each file structure
to use conventional pointers without having to adjust them. To accomplish this requirement, each persistent area is
mapped into its own segment. This approach is in contrast to systems that provide simultaneous access by mapping
multiple persistent areas into the same segment. In these systems, all pointers are relocated when portions of an area
are mapped. In general, this requires access to the type information of the file structure at runtime, which is not usually
possible in programming languages that do not have runtime type-checking. Also, significant execution overhead is
incurred in relocating pointers.

Currently, � Database does not cover pointers among persistent areas (see [BZ89] for a possible solution). Nor
does it deal with distributed persistent areas; we believe that distributed shared memory [SZ90b, WF90] will allow our
current design to scale up to a distributed environment. Object-oriented programming techniques are employed in the
implementation of � Database, but are not essential. � C++ [BDS � 92] is used as the implementation language, which
is a superset of C++ with concurrency extensions, because it allows immediate technology transfer.

The following two properties evolved during the design and implementation of � Database. First, data associated
with accessing a file structure, such as current location in the file, concurrency data or transient recovery information
are not mapped in the file structure. Second, a deliberate attempt is made to retain the conventional semantics of open-
ing and closing a file. Implicit schemes, like pointer-swizzling, have problems detecting the first access but the most
difficult problem is knowing when the access can be terminated (garbage collectors are too slow). The properties in-
volve several levels, each performing a particular aspect of the storage or access management of the file structure (see
Figure 1).

disk file

memory

mapping

secondary
storage non-transient
primary transient
storage

representative
�

�

�

�

�

�

�

�

accessor � accessor 	 accessor
 accessor � file structure
implementor

database implementor
or user

�

�

�

application � application 	

Figure 1: Basic Structure of the Design Methodology

3

4.1 Representative

A representative is responsible for creation and initialization of the file structure for the storage management of access
method data in primary storage, for concurrent accesses to the file’s contents, and for recovery. Each file structure has
a unique representative. In � Database, the representative is a UNIX process, which has its own virtual address space
in which transient information is maintained and the file is mapped, and its own thread of control. The representative
process is created on demand, during creation of a file and for subsequent access by a user, and exists only as long as
required by either of these operations.

A representative’s memory is divided into two sections: private and shared (see Figure 2). Private memory can
only be accessed by the thread of control associated with the UNIX process that created it, i.e. the representative. The
disk file is mapped into the private memory while all data associated with concurrent access to the file is contained in
the representative’s shared memory; such data is always transient. Shared memory is accessible by multiple threads
associated with UNIX processes that interact with the representative. There is no implicit concurrency control among
threads accessing shared memory; mutual exclusion must be explicitly programmed by the file structure designer using
the facilities in � C++.

16M (
���������	��
�������������

)

concurrency control

����������� �!
"�$#��
����#�� �����

accessaccess

memory
shared

memory
privatefile structure

disk file

MAP

����%���&���	��
"�!
"�$'��
����#�� ���	�

#�(*)&���*

�

#�(*)����*

	

Figure 2: Storage Model for Representative

To allow addresses to be stored directly into the file and subsequently used, the followingconvention is observed by
all representatives: the disk file must be mapped into memory starting at a fixed memory location, called the Segment
Base Address. The file base address is conceptually the virtual zero of a separate segment; this is how � Database uses
a UNIX process as a separate segment. In � Database, the value 16M has been chosen for the Segment Base Address as
the starting location of all mapped files; this leaves a sufficiently large space for the applicationand the representative(s).

An application in � Database can have multiple file structures accessible simultaneously. This capability is possible
because each representative has its own private mapping area. Figure 3 shows the memory organization of an applica-
tion using 3 file structures simultaneously. Since each representative has its own segment, relocation of pointers in a
file structure is never required. The disadvantage of this approach is that there can never be pointers from the shared
area to any of the private mapped areas and vice versa. However, addresses from one file structure can be stored in
another file structure, but such addresses can only be dereferenced in the file structure they come from. Hence, either
data must be copied out of a file structure to be manipulated by the application and copied back again, or an application
light-weight task must migrate to the representatives to perform a series of operations.

4.2 B-Tree Example

To define a file structure, e.g. BTreeFile, an abstract data-type is defined with two operations that are implicitly per-
formed: initialization and termination; no other operations are available. A B-Tree is defined as follows:

4

privateprivate
memory

�������������
	�����������
�������
�������

�%�����
	

memory

process

MAP

�����������
��	������������������
�����

application

shared
memory

�����������
��	�����������
�������
�����
!

private
memory

�%�����

MAPMAP

���$� �
�

Figure 3: Accessing Multiple File Structures

class BTreeFile "
public:
BTreeFile(char *DiskFileName, ...) " initialization code # ;
˜BTreeFile(void) " termination code # ;

;

The initialization routine BTreeFile and the termination routine ˜BTreeFile are invoked automatically whenever an
instance of BTreeFile is created and deleted, respectively. An instance of a B-Tree file structure is created using type
BTreeFile, as in: BTreeFile f(”StudentData”, other arguments), where StudentData is the name of the UNIX file in
which the data are stored and retrieved from. There are no user visible routines, which ensures that after the declaration
of an instance of BTreeFile, the corresponding file structure is not accessible to the user/application program.

4.3 Access

The mechanisms for requesting and providing access to a file structure are provided in the form of another abstract data-
type, which is implemented as a class called an access class. Declaration of an access class instance, called an access
object, constitutes the explicit action required to gain access to a file’s contents (i.e. create the mapping). Creating an
access object corresponds to opening a file in traditional systems but it is tied into the programming-language block
structure. As well, the access object contains any transient data associated with a particular access (e.g. the current
record pointer), while the representative contains global transient information (e.g. the type of access for each accessor).
Because the access object is in the application process, communication between it and the representative process is
done by synchronous calls passing data through shared memory. At least one access class must be provided for each
file definition. It is possible to have multiple access classes, each providinga distinct form of access (e.g. initial loading,
sequential, keyed). It is also possible to have multiple access objects communicating with the same representative. This
capability allows an application to have multiple simultaneous views of the data (see Figure 1).

For BTreeFile, the access object is called BTreeFileAcc.

class BTreeFileAcc "
public:
BTreeFileAcc(BTreeFile *f, char *access) " initialization code # ;
˜BTreeFileAcc() " termination code # ;
read(...) " ... # ;
... " other appropriate access routines # ;

;

To gain read access to a file structure object f, an application program declares an instance of BTreeFileAcc, as follows:

5

BTreeFileAcc pf(&f, ”r”). The pointer to f specifies the file structure that is to be accessed through pf, and ”r” specifies
the kind of access for concurrency control purposes. Depending on the particular kind of concurrency control, the
declaration of the access object may block until it is safe to access the file contents and/or individualaccess routine calls
may block. Once instantiated, the access object can be used by an application to perform operations on the file structure
by invoking the public member routines of BTreeFileAcc. For example, in order to read from f, a call is made to the
member routine read of BTreeFileAcc, as in pf.read(...). The routine read communicates with the representative to
perform the desired operation.

4.4 Generic B-Tree

The polymorphic facilities of a programming language can be applied to generalize the definitions of file structures and
to allow reuse of the file structure’s implementation by other file structures. A generic B-Tree file structure is presented
to demonstrate the basic concept. The template facilities of C++ allow the creation of generic file structures (as in E
[RCS89]). The generic B-Tree definition has 2 type parameters and 1 conventional parameter. The type parameters
provide the type of the key and the type of the record for the B-Tree. The optional conventional parameter provides
the size of the B-Tree nodes in bytes. Each B-Tree instance generated from a generic B-Tree type has 3 conventional
parameters: the backing-store UNIX file name, the routine used to compare the keys and the initial space allocated for
the B-Tree in bytes. The following creates two specialized B-Trees:

BTree � int, Record, 4 Kb � db1("db1BTree", less), at10.0pt
���

default initial size
db2("db2BTree", greater, 30 Kb);

���
30 K initial size

Both B-Trees have int keys, Record records and a 4K node size. One instance is sorted in ascending order (less) and
the other one in descending order (greater). Unfortunately, this B-Tree instantiation requires the UNIX file name and
the name of the comparison routine be re-specified at each subsequent usage of the file structure, which is type unsafe.
However, once these two aspects of a file structure are specified correctly, all subsequent access to the database file
structure can be statically type-checked.

There are several requirements on the key type, the record type and the comparison routine. As well, some addi-
tional routines must be supplied. For example, the type of the key and the record must provide an assignment operator,
among other things, and the comparison routine must have a specific type. A complete example showing the creation
of a B-Tree and insertion and retrieval of records is presented in Figure 4.

In � Database, each file structure can provide range queries using a generator or iterator [RCS89, LAB � 81], e.g.
BTreeGen. The generator is an object whose arguments define the kind of range query and it returns one record at
a time from the set of records that satisfy the requirements denoted by the information provided to the generator. The
operator ¿¿ returns a pointer to some record within the specified range, but successive records are not normally ordered.
If all records in the range have been returned, the NULL pointer is returned. By iteratively invoking the operator ¿¿,
the individual records of the range query are obtained.

4.5 Storage Management

In � Database, memory is divided into three major levels for storage management: an address space, which is a set of
addresses from 0 to N used to refer to bytes or words of memory; a segment, which is a contiguous portion of an address
space; and a heap, which is a contiguous portion of a segment. All segments are nested in an address space and all heaps
are nested in a segment. Further, since a heap is simply a block of storage, it is possible for heaps to be nested within
one another. The form of the address for each level may depend on the storage management scheme at that level.

While there are a large number of storage management schemes possible at each level of nesting, the following
three basic schemes are provided in � Database: uniform management, the allocation size is the same for the duration
of the heap; variable management, the allocation size can vary but each allocation remains that size for its duration (like
C’s malloc and free routines); dynamic management, the allocation size can vary in size and each allocated area can
expand and contract in size after its allocation.

A heap may be accessed in two ways: by the file structure implementor and by a nested heap. For example, the
storage management for a B-Tree has 3 levels: the segment, within which uniform-size B-Tree nodes are allocated,
withinwhich uniform or variable sized records are allocated. Depending on the particular implementation of the storage
manager at each level, different capabilities will be provided. A file structure implementor makes calls to the lowest
level (variable storage manager) to allocate records. An expansion object can be passed to the uniform storage manager

6

class Record " � �
data record

public:
float field1, field2;
Record &operator=(const Record &rhs) " ���

define assignment
field1 = rhs.field1;
field2 = rhs.field2;
return(*this); #

;
int greater(const int &op1, const int &op2) " � �

key ordering routine
return op1 � op2;

#
void uMain::main() " ���

uMain uC++ artifact
BTree � int, Record, 4 Kb � db("testdb", greater, 30 Kb);
BTreeAccess � int, Record, 4 Kb � dbacc(db);

���
open B � Tree

int key;
Record rec, *recp;���

insert records
for (key = 1; key � = 1000; key += 1) "

rec.field1 = key
�

10.0;
rec.field2 = key

�
100.0;

dbacc.insert(key, &rec); # ���
static type � checking���

retrieve records
for (BTreeGen � int, Record, 4 Kb � gen(dbacc); gen � � recp;) "

uCout � � recp � � field1 � �
" "

� � recp � � field2 � � endl; #
#

Figure 4: Example Program using a Generic B-Tree

to deal with node splitting and other application-specific requirements. If the segment fills with uniform-size nodes,
the representative storage manager is called by the uniform storage manager to extend the segment.

The criterion used to judge the general storage management approach is whether it can provide performance that is
close to traditional schemes that amalgamate storage management directly with the data structure. Both an independent
and integrated storage management B-Tree were constructed and creation tests were run. The results were virtually
identical, with timings varying by

�
2%.

5 Experimental Proof

A number of compelling arguments have been made in [CFW90] and other publications for the use of single-level
stores for implementing databases. In spite of these arguments, it is clear there is still resistance and skepticism in
the database community. Furthermore, our contention is that mapped files can be used advantageously for building
databases not only in the new single-store environment but also in the traditional environment. Traditional databases
can be accessed using memory-mapped access methods without requiring any changes to the file structure. In all cases,
the mapped access methods should provide performance comparable to traditional approaches while making it much
easier to augment the access methods of the file structure in the future by greatly reducing program complexity.

At the start of our work, there was little published experimental evidence available to support the view that memory-
mapped file structures could perform as well as or better than traditional file structures. Therefore, it was necessary to
implement a number of different memory-mapped file structures and to compare their performance against equivalent
traditional ones.

7

5.1 Experimental Structure

To demonstrate the benefits of memory mapping, different experiments were constructed. The general form of an ex-
periment was to implement a file structure in the traditional and memory-mapped styles, perform retrievals from a file,
which is the most common form of access in a database, and compare the results. While every effort was made to keep
the two file structures as similar as possible, some system problems precluded absolutely identical execution environ-
ments. In particular, the traditionalfile structures were stored on disk as character-special UNIX files and an LRU buffer
manager was used. The memory-mapped files could not be mapped from a character-special file and had to be accessed
from the UNIX file system, which performs all I/O in 8K blocks even though the system page size is 4K. Therefore, to
make the comparisons equal, all of the file structures had 8K node sizes and all I/O was done in 8K blocks.

All experiments were run on a Sequent Symmetry with 10 i386 processors, which uses a simple page-replacement
algorithm. The page-replacement algorithm is FIFO per page table plus a global LRU cache of replaced pages so there
is a second chance to recover a page before it is reallocated. The maximum total size of the resident pages for a program
is determined by the user and upon exceeding that size, pages are removed from the resident set on a FIFO basis. Upon
removal, a page is put into the global cache where it can be reinstated to the resident set if a fault occurs for the page
before the page is reused. This page replacement algorithm was matched against an LRU buffer-manager used by the
traditional databases.

The execution environment was strictly controlled so that results between traditional and memory-mapped access
methods were comparable. First, all experiments were run stand-alone to preclude external interference, except for
those experiments that needed a loaded system. Second, the amount of memory for the experiment’s address space
and the global cache were tightly controlled so that both kinds of file structures had exactly the same amount of buffer
space or virtual memory, respectively. The test files varied in size from 6-32 megabytes. The amount of primary storage
available for buffer management or paging was restricted so that the ratio of primary to secondary storage was approx-
imately 1:10 and 1:20. These ratios are believed to be common in the current generation of computers, supporting
medium (0.1G-.5G) to large databases (1G-4G) but not very large databases.

The following experiments were implemented:

Prefix B � Tree In this experiment, 100,000 uniformly distributed records were generated whose keys were taken from
the unit interval. A record had a variable length with an average of 27 bytes. These records were inserted into a prefix
B � Tree [BU77]. For this B-Tree, 4 query files were generated, where the queries followed a uniform distribution. Each
file is described by the tuple (n,m) where n is the number of queries and m is the number of records sequentially read
from the B-Tree (range query). For example, (10,1000) means executing 10 queries with each query reading a set of
1000 records sequentially. A 5th query file contained 10,000 exact match queries that follow a normal distributionwith
mean 0.5 and variance 0.1.

R-Tree The R-Tree [Gut84] is an access method for multidimensional rectangles. It supports point queries and different
types of window queries. A point query asks for all rectangles that cover a given query point whereas a window query
asks for all rectangles which enclose, intersect or are contained in a given query rectangle. The window queries are
similar to a range query in an ordinary B-Tree. However, there is one basic difference: index pages (internal nodes)
are accessed more frequently in the case of the R-Tree than in the B-Tree case.

For this experiment, 2-dimensional data (100,000 rectangles) and queries from a standardized test bed [BKSS90]
were taken. The maximum number of data rectangles was limited to 450 in the data pages, and to 455 in the directory
pages. The query file consisted of 1000 point queries and 400 each of the three different types of window queries.

Graph To simulate the access patterns found in other data intensive applications (e.g. hypertext or object-oriented
databases), a large directed graph was constructed consisting of 64,000 nodes, each of which was 512 bytes. The nodes
were grouped into clusters of 64 where nodes in a cluster were physically localized. An edge out from a node had a
high probability (85%, 90%, 95%) of referencing a node within the same cluster. Edges leaving a cluster went to a uni-
formly random selected node. Each experiment consisted of 40 concurrent random walks within the graph, consisting
of 500 edge traversals each.

The results of the experiments are presented in Table 1. For each query file, three performance measures were
gathered: the CPU time, the elapsed time, and number of pages or buffers read. The CPU time is the total time spend
by all processors in a given test run, and hence, the CPU time may be greater than the elapsed time. Multiple processors
were used in both traditional and memory mapped experiments. The retrieval application ran on one processor while
the access method for the particular file structure ran on another processor. The elapsed time is the real clock time from
the beginning to the end of the test run. Both times include any system overhead.

8

Primary Memory Size 10% of Database Size
Memory Mapped Traditional

CPU* Elapse Page CPU Elapse Disk
Access Query Time Time Reads Time Time Reads
Method Distr. (secs) (secs) (secs) (secs)

Prefix 1x10,000 35.7 19.7 61 32.2 32.9 53
B-Tree 10x1,000 35.7 19.5 56 32.5 32.6 58

100x100 37.5 22.4 147 35.4 35.7 150
10,000x1 98.1 217.6 8789 240.5 223.6 8746
normal 91.8 181.0 6777 202.3 183.6 6638

R-Tree non-point 154.0 174.5 1414 330.4 334.1 1462
point 109.4 124.1 934 230.5 234.4 896

Network 85% local 318.1 476.1 15294 526.7 458.8 15004
Graph 90% local 271.6 375.5 11278 449.0 370.7 11368

95% local 207.0 243.8 6584 337.7 254.7 6539

Primary Memory Size 5% of Database Size
Memory Mapped Traditional

CPU* Elapse Page CPU Elapse Disk
Access Query Time Time Reads Time Time Reads
Method Distr. (secs) (secs) (secs) (secs)

Prefix 1x10,000 35.5 19.5 61 35.3 35.5 117
B-Tree 10x1,000 35.2 19.6 66 34.2 33.5 131

100x100 37.0 22.1 155 37.4 36.6 216
10,000x1 127.8 255.6 9415 260.7 224.1 9723
normal 126.6 235.8 8250 253.8 217.6 9313

R-Tree non-point 181.3 227.8 2913 367.1 374.5 3396
point 136.8 184.5 2647 279.5 289.6 3491

Network 85% local 383.3 565.8 17772 563.4 495.8 16550
Graph 90% local 330.3 462.1 13602 484.0 403.9 12781

95% local 264.9 316.6 8338 361.9 276.1 7400
CPU times may be greater than elapse time because multiple CPUs are used.

Table 1: Access Method Comparison : Node Size 8K

The results of the experiments confirm the conjecture that performance of memory-mapped file structures is equiva-
lent or better than traditional file structures. For the read operations, the memory-mapped access methods are compara-
ble (

�
10%) to their traditional counterparts. An exception occurs when the LRU buffer space is only 5% of the file size

for sequential reads because the LRU algorithm is suboptimal in this case while the FIFO page-replacement algorithm
is near optimal. For the CPU times, the memory-mapped access methods are generally better than the traditional ones
because there is less time spent doing buffer management. For the elapsed times, the memory-mapped access methods
are comparable (

�
10%) to their traditional counterparts. An exception occurs when memory-mapped access methods

perform small sequential reads because the FIFO page-replacement algorithm is near optimal in this case. All of the
results show that the Sequent page replacement scheme performed comparably to the LRU buffer-manager.

To verify the conjecture on the expected behavior of mapped access methods on a loaded machine, the previous B-
Tree experiments were run during a peak-load period of 20-30 time-sharing users on the Sequent. The memory mapped
and traditional B-Tree retrievals were started at the same time (3:00pm) and so were competing with each other as well
as all other users on the system. The two file structures were on different disks accessed through different controllers
so the OS could not share pages and retrievals were not interacting at the hardware I/O level. However, the amount of
global cache could not be restricted during the day, so if there was free memory available, the memory-mapped access
method would use it indirectly. Table 2 shows the averages of 5 trials. As can be seen, there was a difference only
when there were a significant number of reads. In those cases, the memory-mapped access methods make use of any
extra free memory to buffer data. This is particularly noticeable for the normal distribution because any extra memory

9

significantly reduced the pages read, and hence, the elapse time. Clearly, the LRU buffer manager could be extended
to dynamically increase and decrease buffer space depending on system load, but that further complicates the buffer
manager and duplicates code in the operating system.

Primary Memory Size 10% of Database Size
Memory Mapped Traditional

CPU* Elapse Page CPU Elapse Disk
Access Query Time Time Reads Time Time Reads
Method Distr. (secs) (secs) (secs) (secs)

Prefix 1x10,000 35.8 21.6 60 34.0 35.7 53
B-Tree 10x1,000 36.1 21.8 56 34.8 36.8 58

100x100 37.4 25.24 143 37.0 38.68 150
10,000x1 111.2 277.0 6677 263.4 263.3 8746
normal 97.82 134.5 2063 221.5 217.0 6638

Table 2: Peak Load Retrievals : Node Size 8K

6 Parallelism

Currently, � Database allows a file structure designer to build whatever form of concurrency control is appropriate.
Concurrency control can be specified at a low-level, where semaphores are used to protect data, or at a high-level,
where light-weight server tasks control access to data. While concurrency control is often tied into a particular data
structure, we believe it is possible to provide some general concurrency abstractions to the file structure designer to aid
in this process. A number of different concurrency techniques are being studied that provide two different forms of
parallelism. Backend concurrency deals with the I/O bottleneck, a file structure is partitioned across multiple disks and
access is performed in parallel. Frontend concurrency allow a number of requests to execute in parallel if the requests
access data in different areas of the database. The question to be addressed is how to use memory mapping with both
backend and frontend concurrency.

6.1 Backend Concurrency

Backend concurrency attempts to deal with the CPU-I/O bottleneck by partitioning data across multiple disks and then
accessing the data in parallel [PGK88]. Exact match queries usually cannot take advantage of parallelism possible from
partitioningbecause there is usually only one disk access to service the request. Range queries can take advantage of the
parallelism possible from partitioning if the data is distributed so that portions of the range can be accessed in parallel.
A range query may be broken down into a number of smaller range queries so that each can be executed in parallel.
Similarly, if the file structure is aware of the access pattern of different blocks, it can employ pre-reading techniques
to increase the parallelism in reading blocks of data from the disk. In general, the records returned from a range query
are unordered. If records must be returned in a specific order, that can significantly reduce the amount of parallelism.
In � Database, the generator types for each file structure can manage all concurrent retrieval of records implicitly (see
Figure 4)

In the following discussion, the general concern is not about access to the index portion of the file structure. Nor-
mally the index is relatively small so that most of it remains resident in main memory, and consequently, does not play
a significant role as far as disk accesses are concerned.

6.1.1 Generic Backend Concurrency Algorithm

Once a file structure is partitioned, a retrieval algorithm can take advantage of the potential parallelism, but only if
sufficient hardware is available. First, the disks must be able to be accessed in parallel, which implies that there must
be multiple disk controllers. Second, if multiple processors are available, they must be able to be used to perform any
file-structure administration in parallel with the application processing the records from the range query. Both of these
hardware requirements were satisfied by our Sequent computer.

The algorithm used for backend concurrency is as follows. For a file structure partitionedacross
�

disks, the
�

disk
files are memory mapped into one contiguous segment. Then � (a control variable) kernel threads (UNIX processes)

10

are created that all share the data segment containing the mapped file.
� ���

light-weight tasks are created to perform
the retrieval requests and they execute on the � kernel threads.

�
of the tasks are retrievers and the � � �������
	

task
is the leaf retrieval administrator (LRA). For each generator created, a buffer is allocated by the generator, which is
shared between the application and the file structure. As well, another task, the file structure traverser, is generated,
which partitions the range query. The size of the buffer can be specified as an optional parameter when creating the
generator. The default buffer size is 32K bytes. The traverser task assumes the responsibility of organizing the buffer
space in the form of a sharable buffer pool in some suitable manner. Then the traverser task searches the index structure
finding the leaf nodes that contain records in the range. For each leaf node, the traverser communicates with the LRA
specifying the leaf, number of records in the leaf, and the buffer pool. The LRA farms out the generator requests to its
retrieval tasks. A retrieval task accesses the specified leaf page, allocates a buffer from the buffer pool, and copies as
many records as will fit from the leaf page to the buffer. The last step is repeated until all the records have been copied
into buffers and then the retriever task gets more work from the LRA. The structure of this algorithm is illustrated
in Figure 5. This structure ensures that the only bottleneck in the retrieval is the speed that the buffer can be filled
or emptied. In general, an application program can keep ahead of a small number of disks (1-7 disks). This generic
backend concurrency algorithm can be used for different file structures by specializing the file structure traverser and
the component responsible for processing of individual leaves to extract information.

Iterator
Administrator

Leaf Retrieval

GENERATOR

Query
Results

Leaf
Requests

Shared Buffer Queue

Search Index

Records

Index

diskN

disk3

disk2

disk1 retrieve1

retrieve2

retrieve3

retrieveN

File Structure
Partitioned AccessorFile Structure Segment

Structure

Traverser

File

Figure 5: Backend Concurrency Structure

6.1.2 Experimental Analysis of Partitioned B-Tree

The machine used for these experiments was the same Sequent Symmetry with 8 disk drives, of which 4 were used.
There were 2 disk controllers, each with 2 channels. The drives were equally divided between the controllers. The
experiment was 1000 range queries with each query consisted of reading a random number of sequential records starting
at a randomly selected initial key. The average query size was 2000 records. Two partitioned B-Trees were tested,
one created using a round-robin partitioning (each block is created on the next disk) and one created using the Larson-
Seeger algorithm [SL91]. The partitioned experiments were performed with 1–4 partitions and the application program
received each record but did no processing on the record. The results of the experiments appear in the graphs of Figure
6. The largest decrease in elapsed time is from 1 to 2 partitions because there are 2 controllers. After that, the elapse
time increases because of contention on the two controllers.

11

�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � �

	�
�������
�������

� ����� �

����� �!��"$#�%'&�����()� � � *,+.-�� �

/,#���0�12/,#��3�0 4
4

4

4
4

5 ����6��7"98�:;��"<��#�0 �
�

�

�

�
���)�

�����

�����

�����

�����

���)�

�����

�����

�����

� � � �

*,+.-
������

� �<��� �

�����=�>��"$#�%.&,����()� � ��*,+.-,� �

/�#���0�1?/�#��)��0 4

4 4
4

4

5 ����6���"98�:;��"���#�0 �

� � � �

Figure 6: Backend Concurrency with B-Trees

6.2 Frontend concurrency

Here the concern is with allowing multiple client accessors to simultaneously traverse and manipulate the file structure.
Currently, � C++ provides a number of language mechanisms for a file designer to build concurrency control. Many
options will be built, tested and provided as part of � Database tool kit, however these will be used to build file-structure
specific concurrency control. It is also our intention to study and develop a general purpose low-level concurrency con-
trol facility that will be automatically available to applications written in � Database. For example, allowing multiple
versions of data to co-exist allows a high degree of concurrent and can be implemented in a general way.

7 Recovery Control

Implementing recovery is difficult in memory mapping and a satisfactory solution is still a research issue. If there is
operating-system support to pin pages, traditional schemes can be used (however, with all the associated disadvantages).
With no operating-system support, new techniques must be developed. We will be examining the use of dual memory
maps to allow shadow write pages. One mapping represents the consistent database, which can be read at any time. The
shadow mapping is for pages that are currently being modified. By precisely controlling when the shadow pages are
copied back to the consistent mapping, it is possible to mimic traditional recovery schemes without operating-system
support. The main problem to overcome is premature writing of modified pages by the operating system.

8 Related Work

The earliest use of memory mapping techniques (or a single-level store) can be found in the Multics system [BCD72].
In recent times a number of efforts have been made to use memory mapping. The systems described below are most
closely related to � Database.

Objectstore Database System Objectstore shares a number of goals and objectives with � Database. However, Ob-
jectstore differs significantly from � Database in how the goals and objectives are achieved. In Objectstore, only the
currently accessed pages used by a given transaction are mapped into the address space of the application. This ap-
proach introduces a limit on the number of different data pages that can be used simultaneously by any single transac-
tion; large operations may have to be broken into a series of smaller transactions. In � Database, an entire file structure
is mapped into an individual segment. This approach limits the size of any single file structure to be less than the virtual

12

space supported by the available hardware; large file structures have to be split into smaller ones. There is, however,
no restriction on how much data a single transaction can access simultaneously.

The approach used in Objectstore results in an inferior solution to the problem of accessing multiple file structures.
Objectstore maps pages of all the databases used in an application into the same address space. Each page to be used is
dynamically allocated a virtual address where it is mapped; pointers have to be dynamically relocated, which requires
some portion of the type system to be available at runtime. Also, the need to relocate pointers has the potential of
degrading performance of the database.

Cricket: A Mapped, Persistent Object Store Cricket uses the memory management primitives of the Mach operating
system to provide the abstraction of a “shared, transactional single-level store that can be directly accessed by user
applications” [SZ90a, p. 89]. Cricket follows a client/server paradigm and, upon an explicit request, maps the database
directly into the virtual space of the client application. The fundamental difference from � Database is that the mapping
takes place in the address space of the application, and hence, only one database at a time can be used by an application.
Indeed, the concept of a disk file to group related objects in one collection is not a basic entity in Cricket and it takes
the view that everything that an application needs to use is placed in a single large persistent store. We feel that this
will lead to a certain amount of awkwardness in organizing various components of data and in sharing pieces of data
across different projects. More importantly, this approach will not be able to handle partitioningof data across multiple
disks adequately.

Paul Wilson’s work In [Wil91], Paul Wilson describes a scheme that uses pointer swizzling at page fault time to support
huge address spaces. The basic scheme is very similar to the one employed by Objectstore except that in Wilson’s
scheme pointers on secondary store can have a format different from the pointers in primary storage. Wilson’s scheme
requires a special page fault handler for translating (swizzling) persistent pointers into transient pointers at execution
time, which requires runtime type information. Since some of the pointers in a page can refer to pages that have not
yet been made available, the translation of these pointers requires that all the referent pages be faulted as well. To
prevent a cascade of I/O operations, Wilson’s scheme only reserves the addresses for these extra pages in the page
table instead of actually mapping them to primary storage. However, this solution underutilizes the address space and
an application can potentially run out of addresses. Wilson suggests periodically invalidating all the mappings and
rebuilding them to deal with this problem. Furthermore, objects that cross page boundaries require additional language
support. Wilson’s scheme is a clear winner for applications that require extremely large persistent address spaces using
existing virtual memory hardware. However, the scheme is complex and may result in significant overhead, especially
for applications with poor locality of references. Finally, Wilson’s approach has the same problems as Objectstore with
regard to dynamic relocation and multiple accessible databases.

The Bubba database system The designers of Bubba [BAC � 90, CFW90], a highly parallel database system developed
at MCC, exploited the concept of a single-level store to represent objects uniformly in a large virtual address space. The
focus of Bubba was on developing a scalable shared-nothing architecture which could scale up to thousands of hardware
nodes and the implementation of a single-level store was only a small, though important, portion of the overall project.
The current design of � Database is based on a multiprocessor shared-memory architecture and is not intended to be
used in a distributedenvironment. In Bubba, the Flex/32 version of AT&T UNIX System V Release 2.2 was extensively
modified to build a single-level store, which makes their store highly unportable.

9 Conclusion

We have shown that memory mapping is an attractive alternative for implementing file structures for databases. Memory-
mapped file structures are simpler to code, debug and maintain, while giving comparable performance when used stand-
alone or on a loaded system than for traditional databases. Further, buffer management supplied through the page-
replacement scheme of the operating system seems to provide excellent performance for many different access patterns.
Our design for structuring the low-level portions of a DBMS for memory mapping provides the necessary environment
to implement concurrency control and recovery. Finally, these benefits can be made available in tool kit form on any
UNIX system that supports the mmap system call. Currently, � Database is only missing recovery facilities and these
will be added in the near future.

13

References

[BAC � 90] H. Boral, W. Alexender, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Val-
duriez. PrototyingBubba, A Highly Parallel Database System. IEEE Trans. on Knowledge and Data Eng.,
2(1):4–24, March 1990.

[BCD72] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Multics Virtual Memory: Concepts and Design. Com-
munications of the ACM, 15(5):308–318, May 1972.

[BDS � 92] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. � C++: Concurrency in
the Object-Oriented Language C++. Software—Practice and Experience, 22(2):137–172, February 1992.

[BKSS90] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R
�

-Tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 322–331, 1990.

[BU77] Rudolf Bayer and Karl Unterauer. Prefix B-Trees. ACM Transactions on Database Systems, 2(1):11–26,
March 1977.

[BZ86] P. A. Buhr and C. R. Zarnke. A Design for Integration of Files into a Strongly Typed Programming Lan-
guage. In Proceedings IEEE Computer Society 1986 International Conference on Computer Languages,
pages 190–200, Miami, Florida, U.S.A, October 1986.

[BZ89] P. A. Buhr and C. R. Zarnke. Addressing in a Persistent Environment. In John Rosenburg and David Koch,
editors, Persistent Object Systems, pages 200–217, Newcastle, New South Wales, Australia, January 1989.
Springer-Verlag. Workshops in Computing, Ed. by Professor C. J. van Rijsbergen, QA76.64.I57.

[CAC � 84] W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J. Bailey, and R. Morrison. Persistent Object Manage-
ment System. Software—Practice and Experience, 14(1):49–71, 1984.

[CFW90] George Copeland, Michael Franklin, and Gerhard Weikum. Uniform Object Management. In Advances
in Database Technology - EDBT’90, volume 416, pages 253–268, Venice, Italy, March 1990. Springer-
Verlag.

[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 47–57, 1984.

[IBM78] System/38 Services Overview. IBM, 1978.

[LAB � 81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and Alan
Snyder. CLU Reference Manual, volume 114 of Lecture Notes in Computer Science. Springer-Verlag,
1981.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore Database System. Communications
of the ACM, 34(10):50–63, October 1991.

[MBC � 89] R. Morrison, A. Brown, R. Carrick, R. Connor, A. Dearle, and M. P. Atkinson. The Napier Type System. In
John Rosenberg and David Koch, editors, Persistent Object Systems, pages 3–18, University of Newcastle,
New South Wales, Australia, January 1989. Springer-Verlag. Workshops in Computing, Ed. by Professor
C. J. van Rijsbergen, QA76.64.I57.

[Mip91] MIPS R4000 Microprocessor User’s Manual. MIPS Computer Systems Inc, 1991.

[Mos90] J. Moss. Working with Persistent Objects: To Swizzle or Not to Swizzle. Technical Report CS Technical
Report 90-38, Computer Science Department, University of Massachusetts, May 1990.

[Org72] E. I. Organick. The Multics System. The MIT Press, Cambridge, Massachusetts, 1972.

[PGK88] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of Inexpensive Disks(RAID).
In Proceedings of the 1988 ACM SIGMOD. ACM, June 1988.

14

[PS-87] The PS-Algol Reference Manual, 4th Ed. Technical Report PPRR 12, University of Glasgow and St. An-
drews, Scotland, June 1987.

[RCS89] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The Design of the E Programming Language.
Technical Report CS-TR-824, Computer Science Department, University of Wisconsin-Madison, Madi-
son, Wisconsin, 53706, February 1989.

[RKA92] J. Rosenberg, J. L. Keedy, and D. A. Abramson. Addressing Mechanisms for Large Virtual Memories.
The Computer Journal, 35(4):369–375, August 1992.

[SL91] Bernhard Seeger and Per-Ake Larson. Multi-Disk B-trees. In Proceedings of the 1991 ACM SIGMOD,
pages 436–445, Denver, Colorado, USA, June 1991. ACM.

[STP � 87] Alfred Z. Spector, D. Thompson, R. F. Pausch, J. L. Eppinger, D. Duchamp, R. Draves, D. S. Daniels, and
J. L. Bloch. Camelot: A Distributed Transaction Facility for Mach and the Internet - An Interim Report.
Technical Report CMU-CS-87-129, Carnegie Mellon University, 1987.

[Sun90] System Services Overview. Sun Microsystems, 1990.

[SZ90a] Eugene Shekita and Michael Zwilling. Cricket: A Mapped, Persistent Object Store. In A. Dearle et al,
editor, Implementing Persistent Object Bases: Principles and Practise, pages 89–102. Morgan Kaufmann,
1990.

[SZ90b] M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared Memory. IEEE Computer,
23(5):54–64, May 1990.

[TRY � 87] A. Tevanian, Jr., R. F. Rashid, M. W. Young, D. B. Golub, M. R. Thompson, W. Bolosky, and R. Sanzi. A
Unix Interface for Shared Memory and Memory Mapped Files Under Mach. In Proceedings of the Summer
1987 USENIX Conference, pages 53–67, Phoenix, Arizona, June 1987. USENIX Association.

[vO90] Peter van Oosterom. Reactive Data Structures for Geographic Information Systems. Ph.D. Thesis, Dept.
of CS, Leiden University, December 1990.

[WF90] K.L. Wu and W.K. Fuchs. Recoverable Distributed Shared Virtual Memory. IEEE Transactions on Com-
puters, 39(4):460–469, April 1990.

[Wil91] Paul R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge Adrress Spaces on
Standard Hardware. Computer Architecture News, 19(4):6–13, June 1991.

15

