
Dependency-Free Capture Tracking
Edward Lee

Computer Science

University of Waterloo

Waterloo, ON, Canada

Kavin Satheeskumar

Computer Science

University of Waterloo

Waterloo, ON, Canada

Ondřej Lhoták

Computer Science

University of Waterloo

Waterloo, ON, Canada

ABSTRACT
Type systems usually characterize the shapes of values but not

usually their free variables. Many desirable safety properties could

be guaranteed by the type system if it knew exactly which variables

were free in values.

There has been much recent work investigating such systems,

with an eventual goal of incorporating a capture tracking system

into Scala. These systems are unfortunately complicated by ad-

vanced features in Scala’s type system, particularly dependent types.

We explore what a capture tracking system could look like without

the full complication of dependent types.

CCS CONCEPTS
• Software and its engineering → General programming lan-
guages; Compilers.

KEYWORDS
System F<:, Capture Tracking, Type Systems

ACM Reference Format:
Edward Lee, Kavin Satheeskumar, and Ondřej Lhoták. 2023. Dependency-

Free Capture Tracking. In Proceedings of the 25th ACM International Work-
shop on Formal Techniques for Java-like Programs (FTfJP ’23), July 18, 2023,
Seattle, WA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.

1145/3605156.3606454

1 INTRODUCTION
Type systems usually characterize the shapes of values but not

their free variables. This is unfortunate, as many desirable safety

properties could be guaranteed by the type system if it knew exactly

which variables were free in values.

For example, using the effects-as-capabilities discipline, one can
reduce the problem of tracking where potentially unsafe effects

could happen to the problem of tracking where capabilities corre-
sponding to those effects could flow to in the program. There is

an ongoing effort to incorporate such a system into Scala, and a

working prototype has been implemented in the Dotty compiler –

see Odersky et al. [5].

Formalizing such a system has been difficult. The problem is that

a free variable tracking system is inherently dependently typed, in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FTfJP ’23, July 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0246-4/23/07. . . $15.00

https://doi.org/10.1145/3605156.3606454

that types track (term-level) variables. Consider an example Scala

definition:

def delayedPrint(s: {*} String) = () => print(s)

Here, the * in the type of s specifies that capturing s is to be tracked
by the type system. Thus, the return type of delayedPrint could
be {s} Unit => Unit to indicate that the closure that is returned

captures s. A type like print (s : {*} String) => {s} Unit
=> Unit will always unfortunately contain term variables.

One attempt to formalize a tracking system by Boruch-Gruszecki

et al. [3] runs into complications concerning dependent types,

which they solve by enforcing variance restrictions on where type

variables can occur. More recently, Odersky et al. [6] sidestep these

issues by working in administrative normal form (ANF), a technique

previously used by Rapoport and Lhoták [7] and Amin et al. [1] to

work around similar complications in formalizing type dependency

in DOT, Scala’s core calculus. However, the indirection of ANF

makes it difficult to acquire an intuition for the properties of the

system.

This does not need to be the case, though. As Brachthäuser et al.

[4] show, a capture tracking system can be done with a simple core

calculus with a simple mechanized proof soundness even in the

presence of dependent types. While their system lacks subtyping,

their system differs in one key way compared to Odersky et al. [6]

and Boruch-Gruszecki et al. [3] which enables a simple soundness

proof to go through while still keeping track of captured variables

in types. They annotate their function applications with the capture

information which should be substituted instead of relying on the

computed capture information on the actual value being substituted

in.

Inspired by Brachthäuser et al. [4], we show that a similar tech-

nique also works in systems like Boruch-Gruszecki et al. [3] and

Odersky et al. [6]. We present a simple calculus System F<:C that
extends System F<: with capture tracking without resorting to ANF

nor to variance restrictions on type variables, for which we have

mechanized a soundness proof, and we sketch out how System F<:C
can be used as a basis of soundness proofs for a surface syntax in a

practical programming language. Our development has beenmecha-

nized in Coq, and can be found at https://github.com/e45lee/simple-

capture-proof.

We hope that with this contribution, capture tracking systems

will be better understood, and that System F<:C can serve as the

basis of a proof of soundness for capture tracking systems – not

only in Scala, but for other languages as well.

2 CAPTURE TRACKING
At its core, capture tracking is concerned with:

(1) Tracking what free variables are present in values, and,

(2) For functions, tracking how arguments flow into results.

39

https://doi.org/10.1145/3605156.3606454
https://doi.org/10.1145/3605156.3606454
https://doi.org/10.1145/3605156.3606454
https://github.com/e45lee/simple-capture-proof
https://github.com/e45lee/simple-capture-proof
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605156.3606454&domain=pdf&date_stamp=2023-07-18

FTfJP ’23, July 18, 2023, Seattle, WA, USA Edward Lee, Kavin Satheeskumar, and Ondřej Lhoták

For example, in our earlier example:

def delayedPrint(s: {*} String) = () => print(s)

The above term would receive the following type:

{print} (s : {*} String) => {s} Unit => Unit

This type describes that delayedPrint is a function that returns a

thunk which captures the parameter s passed to delayedPrint.
Applying delayedPrint to a string returns a value whose type

reflects that it captures that string. For example, in the following

listing, delayedPrint(hello) has type {hello} Unit => Unit.

val hello: {*} String = "Hello␣World".

delayedPrint(hello) // returns thunk with type {hello}

Unit => Unit

2.1 Dependent Types
Dependent types pose a problem. Consider the following example.

val goodbye: {*} String = "Goodbye␣World".

def wantsEqual = (s: {*} () => String) =>
(t: {s} () => String) => { ... }

wantsEqual

(if true then () => hello else () => goodbye)

(() => goodbye)

Here, we declare that goodbye is a Stringwhich should be tracked,
and wantsEqual is a curried function that expects a value s that

can capture anything and a value t that captures the same variables

as s does. We then apply wantsEqual to a conditional expression

that returns two thunks: one returning hello and one returning

goodbye:

if true then () => hello else () => goodbye

Now,what should the type of this conditional term be? Both branches

return a thunk returning a String, but one captures hello and the
other goodbye. All we can say is that the conditional could possibly

capture hello or goodbye, giving the conditional the type {hello,
goodbye} () => String. Thus, wantsEqual(if true then ()
=> hello else () => goodbye) has type ({hello, goodbye}()
=> String) => T for some T. Accordingly, we widen the type of the
second argument of wantsEqual from {goodbye}() => String
to {hello, goodbye}() => String. The overall program is well

typed.

Now, consider what happens after a single step of reduction,

which reduces the conditional term to just the thunk () => hello.
The overall program reduces to:

wantsEqual (() => hello)(() => goodbye) // what type does

this function have?

The next step will be to reduce the application wantsEqual(()
=> hello). As is standard for function application, we substitute

the argument () => hello for the parameter s in the body of

wantsEqual. But s occurs not only in the body of the function, but

also in the type of the second parameter t, which is {s} () =>
String. What should be substituted for s in the type of t?

There are a few options. One option is to substitute with the

actual set of variables that are captured by the value, namely the

free variables of () => hello. This is given by the substitution

rule:

(𝜆(𝑥 : 𝑇).𝑡)𝑣 −→ 𝑡 [𝑥 ↦→type 𝑓 𝑣 (𝑣)] [𝑥 ↦→term 𝑣] (beta-v-bad)

However, this cannot be done so easily. In our example, if we re-

placed s with hello in the types of the body of wantsEqual, we
end up with the term:

((t: {hello} () => String) => ...) (() => goodbye)

This is obviously ill-typed, since the argument captures goodbye but
is required by the parameter type to capture hello. The reduction
in this example violates type preservation. What went wrong? In

this example two things went wrong for this to transpire:

(1) The capture set that we had “assigned” to s shrank under

reduction from {hello, goodbye} to just {hello}, and,
(2) We used s in a negative, contravariant position – namely, in

the type annotation for what we expect to be passed in the

second parameter t.

This breaks preservation under reduction, as contravariance

flips the subtyping hierarchy. It would be unsound for s to shrink

in this manner. It must either stay static or expand. In order for

preservation to hold, we need to prevent this from happening...but

how?

One possibility is to simply disallow contravariant occurrences

of term variables in types, which is the approach taken by Boruch-

Gruszecki et al. [3]. This is restrictive, however, and complicates

the proof of soundness, which needs to enforce and check that term

variables occur only covariantly in types, even under reduction.

Another possibility is to make what we “assign” to s static, by
putting programs in administrative normal form, in effect assigning

a name to every (sub)expression in a program:

val tmp =
if true then () => hello else () => goodbye

wantsEqual(tmp) // expects {tmp} String

Now, since we have named the conditional term tmp, we can give

wantsEqual(tmp) the type ({tmp} () => String) => T. Since
tmp is named, we can use the capture set {tmp} to represent exactly
what tmp captures, even as what is stored in tmp shrinks under

reduction from something capturing {hello, goodbye} to just

hello.

val tmp = () => hello // reduced

wantsEqual(tmp) // still expects {tmp} String.

This is the approach taken by Odersky et al. [6]. Similar approaches

have been used to handle variance issues in other contexts – for

example, Rapoport and Lhoták [7] and Amin et al. [1]. However,

administrative normal form adds complexity to the reduction rules.

Moreover, it does not even improve expressiveness for this example.

While wantsEqual can be typed, the only variable that can be

passed to wantsEqual(tmp) is either tmp itself or a variable that

does not capture any other tracked variables. In particular, the ANF-

converted version of the original term wantsEqual(tmp)(() =>
goodbye) remains ill-typed.

In this paper, in Section 3, we explore a third approach, which is

to annotate each term application in the original program with the

capture set that will be substituted in place of that term variable in

capture set position. That set is fixed in the original program and

does not shrink with reduction. Formally, we replace (beta-v-bad)

with the following:

(𝜆(𝑥 : 𝑇).𝑡) [𝐶] (𝑣) −→ 𝑡 [𝑥 ↦→type 𝐶] [𝑥 ↦→term 𝑣] (beta-v)

40

Dependency-Free Capture Tracking FTfJP ’23, July 18, 2023, Seattle, WA, USA

This neatly sidesteps the issue of shrinking variables and variance,

at the cost of annotating each term application with a capture

set. The resulting system satisfies type preservation and allows us

to type the wantsEqual example with the capture set annotation

{hello,goodbye}:

wantsEqual

{hello , goodbye}

(if true then () => hello else () => goodbye)

{hello , goodbye }(() => goodbye)

-->

wantsEqual

{hello , goodbye }(() => hello)

{hello , goodbye }(() => goodbye)

-->

(t: {hello , goodbye} () => String)

{hello , goodbye }(() => goodbye)

The System C calculus of Brachthäuser et al. [4] also uses this

approach, but in the context of a rather different calculus.

2.2 Types, Shapes, and Polymorphism
Another issue that arises is that of parametric polymorphism. What

should a type variable X quantify over, now that types contain both

information describing the shape of a value, as well as what that
value captures. The seemingly obvious answer is that X should stand
for both the shape and the capture information of a value, but this

imposes some restrictions. For one, if X is a type variable that stands
for a full type, how do we interpret a type like {hello} X that adds
a capture set to a type variable? This is not so clear, especially

after X has been substituted away for a type like {goodbye} () =>
String. What does the type {hello}({goodbye} () => String)
even mean? Do we somehow combine the two capture sets {hello}
and {goodbye}?

One solution is to prevent type variables from further being

annotated by capture sets. This has the advantage of being sim-

ple conceptually at first glance. However, it comes at the cost of

complexity in the calculus: Boruch-Gruszecki et al. [3] require two

very distinct typing rules for term variables depending on what

sort of type they are bound to. Furthermore, complications arise in

the presence of generic data types. Consider an arbitrary list type

List[X] describing a list containing elements of type X, and the

generic map function over said lists. What should the type of map

be – in particular, what should the return type of map be?

def map[X,Y](l: {*} List[X], f: {*} X => Y)

: {???} List[Y]

Assuming map does not capture anything else, the values that could

be captured in the resulting list must come from f and the elements

of l. Naming the former is easy in a capture set, but not the latter, as

the result does not capture l directly but the elements of l, which
do not have any name in this scope. We could have the capture set

l stand in for all its elements when l is given a List type, but that

requires special support in the calculus for every data structure.

To sidestep this issue, Odersky et al. [6] require generic data

structures to hold only pure elements with empty capture sets. This

would be impractically restrictive, however, so they add a special

mechanism called boxing to “tunnel” captures, by temporarily mak-

ing impure values pure so they can be stored in a generic data

structure, but marking their type to ensure that the necessary cap-

tures are covered by the type when the element is later retrieved

from the data structure.

In this paper, as we discuss in Section 3, we use a more familiar

mechanism, for which soundness proofs are well understood: an

additional binding form for variables that stand for capture sets.

Thus, we separate the binders for the shape part and the capture

part of a type. In this setting, we could give map the following

signature:

def map[C,X,Y](l: {*} List[{C} X], f: {*} X => Y)

: {C, f} List[{C, f} Y]

Here, the capture set binder allows us to introduce a name C for

the capture set of the elements of l.

3 A SIMPLER CALCULUS
To this end, we develop a simpler capture tracking calculus Sys-

tem F<:C inspired by these observations. As discussed in Section

2.3, we explicitly annotate term applications with the capture sets

which should be substituted in. Specifically, we define application

reduction to be as below:

(𝜆(𝑥 : 𝑇).𝑡) [𝐶] (𝑣) −→ 𝑡 [𝑥 ↦→type 𝐶] [𝑥 ↦→term 𝑣] (beta-v)

Obviously, though, C needs to bound to what could be carried in v
– this is handled through the typing rule (app).

Γ ⊢ 𝑡 : {𝐷} (𝑥 : {𝐶} 𝑆) → 𝑇 Γ ⊢ 𝑠 : {𝐶} 𝑆
Γ ⊢ 𝑡 [𝐶] (𝑠) : 𝑇 [𝑥 ↦→ 𝐶]

(app)

To handle parametric polymorphism, as discussed in Section 2.2,

we adopt a split shape-type system with polymorphism on shape

variables. We support capture polymorphism directly using a third

binder Λ(𝑌 <: 𝐶) .𝑡 for capture set variables.
This allows for straightforward mechanized proofs of Progress

and Preservation, without requiring variance restrictions or admin-

istrative normal form.

Theorem 3.1 (Preservation). Suppose Γ ⊢ 𝑠 : 𝑇 , and 𝑠 −→ 𝑡 .
Then Γ ⊢ 𝑡 : 𝑇 as well.

Theorem 3.2 (Progress). Suppose ∅ ⊢ 𝑠 : 𝑇 . Either 𝑠 is a value,
or 𝑠 −→ 𝑡 for some term 𝑡 .

Our development has been mechanized in Coq, based on the

mechanization System F<: of Aydemir et al. [2]. While there are

are many lemmas in our mechanization, due to our three binding

forms, all of those proofs were straightforward andwere not difficult

to discharge. The only proofs that were difficult were those that

dealt with sets, which is mainly due to lack of good automation for

working with sets in Coq.

3.1 The Burden of Annotations?
One might object to the extra annotation required on term applica-

tion. After all, one has to find a C – a capture set – to fill in there.

However, this is not such an onerous requirement. As Brachthäuser

et al. [4] observe, one infers the appropriate annotation anyways

while type checking. Concretely, with the same typing rules, we

could devise a calculus System F<:CO, without reduction rules, but

with almost the same syntax and typing rules, with the following

two changes to syntax and typing:

41

FTfJP ’23, July 18, 2023, Seattle, WA, USA Edward Lee, Kavin Satheeskumar, and Ondřej Lhoták

𝑠, 𝑡 ::= Terms
| 𝜆(𝑥 : 𝑇).𝑡 term abstraction

| Λ(𝑋 <: 𝑆) .𝑡 shape abstraction

| Λ(𝑌 <: 𝐶).𝑡 capture abstraction

| 𝑥 term variable

| 𝑠 [𝐶] (𝑡) application

| 𝑠 [𝑆] shape application

| 𝑠 [𝐶] capture application

Γ ::= Environment
| · empty

| Γ, 𝑥 : 𝑇 term binding

| Γ, 𝑋 <: 𝑆 shape binding

| Γ, 𝑌 <: 𝐶 capture binding

𝑆 ::= Shapes
| 𝑋 shape variable

| (𝑥 : 𝑇1) → 𝑇2 function shapes

| ∀(𝑋 <: 𝑆) .𝑇 for-all shapes

| ∀(𝑌 <: 𝐶).𝑇 capture for-all shapes

𝑇 ::= Types
| {𝐶} 𝑆 capturing type

𝐶, 𝐷 ::= Capture Sets
| {𝑥1, 𝑥2, . . . , 𝑌1, 𝑌2, . . .} proper set

| ⊤ universal set

where 𝑌 capture variable

Figure 1: The syntax of System F<:C.

Subcapturing Γ ⊢ 𝐶 <: 𝐷

Γ ⊢ 𝐶 <: ⊤ (sc-univ)

𝑥 ∈ 𝐶

Γ ⊢ {𝑥} <: 𝐶
(sc-in)

∀𝑥 ∈ 𝐶, Γ ⊢ {𝑥} <: 𝐷
Γ ⊢ 𝐶 <: 𝐷

(sc-expand)

𝑥 : {𝐶} 𝑆 ∈ Γ Γ ⊢ 𝐶 <: 𝐷

Γ ⊢ {𝑥} <: 𝐷
(sc-var)

𝑥 <: 𝐶 ∈ Γ Γ ⊢ 𝐶 <: 𝐷

Γ ⊢ {𝑥} <: 𝐷
(sc-cvar)

Figure 2: Subcapturing rules of System F<:C.

(1) Term application omits the capture set annotation – 𝑓 (𝑣)
instead of 𝑓 [𝐶] (𝑣).

(2) The typing judgment is updated to reflect this:

Subtyping Γ ⊢ 𝑆1 <: 𝑆1 and Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑆 <: ⊤ (sub-top)

𝑋 ∈ Γ

Γ ⊢ 𝑋 <: 𝑋
(sub-refl-svar)

𝑋 <: 𝑆1 ∈ Γ Γ ⊢ 𝑆1 <: 𝑆2
Γ ⊢ 𝑋 <: 𝑆2

(sub-tvar)

Γ ⊢ 𝐶1 <: 𝐶2 Γ ⊢ 𝑆1 <: 𝑆2
Γ ⊢ {𝐶1} 𝑆1 <: {𝐶2} 𝑆2

(sub-type)

Γ ⊢ 𝑇1 <: 𝑇2 Γ, 𝑥 : 𝑇1 ⊢ 𝑇3 <: 𝑇4
Γ ⊢ (𝑥 : 𝑇1) → 𝑇3 <: (𝑥 : 𝑇2) → 𝑇4

(sub-arrow)

Γ ⊢ 𝑆1 <: 𝑆2 Γ, 𝑋 <: 𝑆1 ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∀(𝑋 <: 𝑆1).𝑇1 <: ∀(𝑋 <: 𝑆2) .𝑇2

(sub-all)

Γ ⊢ 𝐶1 <: 𝐶2 Γ, 𝑌 <: 𝐶1 ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∀(𝑌 <: 𝐶1) .𝑇1 <: ∀(𝑋 <: 𝐶2) .𝑇2

(sub-call)

Figure 3: Subtyping rules of System F<:C.

Typing Γ ⊢ 𝑡 : 𝑇

𝑥 : {𝐶} 𝑆 ∈ Γ

Γ ⊢ 𝑥 : {𝑥} 𝑆
(var)

Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇2
Γ ⊢ 𝜆(𝑥 : 𝑇1).𝑡 : {𝑓 𝑣 (𝑡) − 𝑥} (𝑥 : 𝑇1) → 𝑇2

(abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇
Γ ⊢ Λ(𝑋 <: 𝑆) .𝑇 : {𝑓 𝑣 (𝑡)} ∀(𝑋 <: 𝑆) .𝑇

(s-abs)

Γ, 𝑌 <: 𝐶 ⊢ 𝑡 : 𝑇
Γ ⊢ Λ(𝑌 <: 𝐶) .𝑇 : {𝑓 𝑣 (𝑡)} ∀(𝑌 <: 𝐶).𝑇

(c-abs)

Γ ⊢ 𝑡 : {𝐷} (𝑥 : {𝐶} 𝑆) → 𝑇 Γ ⊢ 𝑠 : {𝐶} 𝑆
Γ ⊢ 𝑡 [𝐶] (𝑠) : 𝑇 [𝑥 ↦→ 𝐶]

(app)

Γ ⊢ 𝑡 : {𝐷} ∀(𝑋 <: 𝑆) .𝑇 Γ ⊢ 𝑆 ′ <: 𝑆
Γ ⊢ 𝑡 [𝑆 ′] : 𝑇 [𝑋 ↦→ 𝑆 ′]

(s-app)

Γ ⊢ 𝑡 : {𝐷} ∀(𝑌 <: 𝐶).𝑇 Γ ⊢ 𝐶′ <: 𝐶

Γ ⊢ 𝑡 [𝐶′] : 𝑇 [𝑌 ↦→ 𝐶′]
(c-app)

Figure 4: Typing rules for System F<:C

42

Dependency-Free Capture Tracking FTfJP ’23, July 18, 2023, Seattle, WA, USA

Evaluation 𝑠 −→ 𝑡

(𝜆 (𝑥 : 𝑇) .𝑡) [𝐶] (𝑣) −→ 𝑡 [𝑥 ↦→type 𝐶] [𝑥 ↦→term 𝑣] (beta-v)

(Λ(𝑋 <: 𝑆𝑏) .𝑡) [𝑆] −→ 𝑡 [𝑋 ↦→ 𝑆] (beta-S)

(Λ(𝑌 <:𝐶𝑏) .𝑡) [𝐶] −→ 𝑡 [𝑌 ↦→ 𝐶] (beta-C)

𝑠 −→ 𝑡

𝐸 [𝑠] −→ 𝐸 [𝑡]
(context)

𝐸 ::= [] | 𝐸 [𝐶] (𝑡) | 𝑣 [𝐶] (𝐸) Evaluation Context
| 𝐸 [𝑆]
| 𝐸 [𝐶]

Figure 5: Reduction rules for System F<:C

Γ ⊢ 𝑡 : {𝐷} (𝑥 : {𝐶} 𝑆) → 𝑇 Γ ⊢ 𝑠 : {𝐶} 𝑆
Γ ⊢ 𝑡 (𝑠) : 𝑇 [𝑥 ↦→ 𝐶]

(app-omit)

At the surface level, System F<:CO looks almost like a dependently-

typed calculus without capture annotations in the same style as

Boruch-Gruszecki et al. [3]. This allows System F<:CO to serve as

the basis for the surface-level syntax of a capture tracking system

in a programming language, like Scala. It does not contain anno-

tations like System F<:C. But System F<:C can be used to show

that well-typed System F<:CO programs behave properly as well.

A typing derivation for a System F<:CO program is in one-to-one

correspondence with a typing derivation for a System F<:C program
– simply lift out the Cs that appear in the (app-omit) rule into the

program itself. Progress and preservation in System F<:C guaran-
tee that the resulting System F<:C program will reduce properly

and not get stuck. Note, however, that the program will reduce

according to the inferred capture sets on term application, unlike

previous dependently-typed capture tracking calculi. This avoids

the restrictions that Odersky et al. [6] and Boruch-Gruszecki et al.

[3] imposed on their systems.

4 FUTUREWORK
System F<:C contributes a simple and sound basis for an expressive

capture tracking system in a System F<:-based programming lan-

guage. It does so by adding capture set annotations at every term

application. Some existing systems share a similar property, in that

the capture set to be substituted when the term is applied can be

inferred by simply looking at the term. Notably, this is true of Oder-

sky et al. [6]’s System CC<:□. Term application in their ANF-based

calculus reduces as follows:

𝑓 is bound to 𝜆𝑥 .𝑡 in the enclosing ANF context

𝑓 (𝑦) −→ 𝑡 [𝑥 ↦→type {𝑦}] [𝑥 ↦→term 𝑦]
(beta-v-var)

It would be interesting to explore whether our simpler System F<:C
could serve as a basis for showing the soundness of System CC<:□.
More generally, it would be interesting to see if System F<:C could
serve as the basis of soundness proofs for other capture tracking

systems which may come about in the future.

5 CONCLUSION
We contributed a simple and sound treatment of capture tracking

as an extension of System F<: without the complications involving

dependent types that arise in existing attempts. We show that

simply annotating term applications with static capture sets allows

for a simpler treatment of soundness in a core calculus, without

the need for variance restrictions or ANF. We hope that this will

contribute to better intuitive understanding of capture tracking

systems and that System F<:C can serve as the basis of a proof of

soundness for capture tracking systems – not only for Scala, but

for other languages as well.

REFERENCES
[1] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki.

2016. The essence of dependent object types. A List of Successes That Can Change
the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday
(2016), 249–272.

[2] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and

Stephanie Weirich. 2008. Engineering Formal Metatheory. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Francisco, California, USA) (POPL ’08). Association for Computing

Machinery, New York, NY, USA, 3–15. https://doi.org/10.1145/1328438.1328443

[3] Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee,

Ondřej Lhoták, and Martin Odersky. 2021. Tracking Captured Variables in Types.

arXiv:2105.11896 [cs.PL]

[4] Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander

Boruch-Gruszecki. 2022. Effects, Capabilities, and Boxes: From Scope-Based

Reasoning to Type-Based Reasoning and Back. Proc. ACM Program. Lang. 6,
OOPSLA1, Article 76 (apr 2022), 30 pages. https://doi.org/10.1145/3527320

[5] Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser,

Edward Lee, and Ondřej Lhoták. 2021. Safer Exceptions for Scala. In Proceedings
of the 12th ACM SIGPLAN International Symposium on Scala (Chicago, IL, USA)
(SCALA 2021). Association for Computing Machinery, New York, NY, USA, 1–11.

https://doi.org/10.1145/3486610.3486893

[6] Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan

Brachthäuser, and Ondřej Lhoták. 2022. Scoped Capabilities for Polymorphic

Effects. arXiv:2207.03402 [cs.PL]

[7] Marianna Rapoport and Ondřej Lhoták. 2019. A Path to DOT: Formalizing Fully

Path-Dependent Types. Proc. ACM Program. Lang. 3, OOPSLA, Article 145 (oct
2019), 29 pages. https://doi.org/10.1145/3360571

Received 2023-05-26; accepted 2023-06-23

43

https://doi.org/10.1145/1328438.1328443
https://arxiv.org/abs/2105.11896
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3486610.3486893
https://arxiv.org/abs/2207.03402
https://doi.org/10.1145/3360571

	Abstract
	1 Introduction
	2 Capture Tracking
	2.1 Dependent Types
	2.2 Types, Shapes, and Polymorphism

	3 A Simpler Calculus
	3.1 The Burden of Annotations?

	4 Future work
	5 Conclusion
	References

