
Simple Reference Immutability for System

F<:

Edward Lee and Onďrej Lhoták

University of Waterloo

October 26, 2023

▶ Pure, functional, programs are great, as

they are easy to reason about.

▶ But side effects are useful!

▶ Pure, functional, programs are great, as

they are easy to reason about.

▶ But side effects are useful!

Let’s build a compiler
object analysis {

class Procedure(name : String) {

val locals : mutable .Map[String, Procedure] = ???

def addLocalProcedure(name: String, proc: Procedure) = {

locals += (name -> proc)

}

}

val table : mutable .Map[String, Procedure] = ???

def analyze(ast: AST) = {

ast.forEach((node) => {

table.add(node.name, new Procedure(???))

})

}

}

Mutation is often handy!

Some mutation is bad!
object codegen {

def go() = {

analysis.table = ??? /* oops */

}

}

We may want to forbid changing the symbol table outside of
semantic analysis, for example.

Mutation is hard to control!
object analysis {

private val table[analysis] = ???

def symbolTable = table.toMap

// create immutable copy of table

}

This doesn’t work!
object codegen {

def go() = {

analysis.symbolTable["main"].locals += ("bad" -> ???)

// whoops...

}

}

Mutation is hard to control!
object analysis {

private val table[analysis] = ???

def symbolTable = table.toMap

// create immutable copy of table

}

This doesn’t work!
object codegen {

def go() = {

analysis.symbolTable["main"].locals += ("bad" -> ???)

// whoops...

}

}

While we created an immutable map, we
created an immutable map mapping strings
to mutable Procedure objects.

So we can still mutate values that were transitively reachable from
the map.

Enter Reference Immutability

▶ References can be marked readonly.

▶ readonly references can only be read from (naturally)!

▶ References read from a readonly reference are
themselves readonly. This viewpoint adapts references
to ensure transitive immutability.

Enter Reference Immutability

▶ References can be marked readonly.

▶ readonly references can only be read from (naturally)!

▶ References read from a readonly reference are
themselves readonly. This viewpoint adapts references
to ensure transitive immutability.

case class Pair[X](var first: X, var second: X)

// OK, takes in a regular (mutable) reference

def good(x : Pair[Int]) =

{ x.first = 5 }

// Bad, mutates through a read-only

// reference

def bad1(y : @readonly Pair[Int]) =

{ y.first = 7 }

// Bad, mutates through a (read-only)

// reference read from a read-only

// reference.

def bad2(y : @readonly Pair[Pair[Int]]) =

{ y.first.first = 5 }

case class Pair[X](var first: X, var second: X)

// OK, takes in a regular (mutable) reference

def good(x : Pair[Int]) =

{ x.first = 5 }

// Bad, mutates through a read-only

// reference

def bad1(y : @readonly Pair[Int]) =

{ y.first = 7 }

// Bad, mutates through a (read-only)

// reference read from a read-only

// reference.

def bad2(y : @readonly Pair[Pair[Int]]) =

{ y.first.first = 5 }

case class Pair[X](var first: X, var second: X)

// OK, takes in a regular (mutable) reference

def good(x : Pair[Int]) =

{ x.first = 5 }

// Bad, mutates through a read-only

// reference

def bad1(y : @readonly Pair[Int]) =

{ y.first = 7 }

// Bad, mutates through a (read-only)

// reference read from a read-only

// reference.

def bad2(y : @readonly Pair[Pair[Int]]) =

{ y.first.first = 5 }

Long line of work here!

▶ Javari (Tschantz 2005).

▶ IGJ (Zibin 2007).

▶ ReIm (Huang 2012).

▶ Immutability for C# (Gordon 2012).

▶ roDOT (Dort 2020).

Languages with reference immutability: D, Rust, ...

Formalizations have been challenging

Today

▶ Simple operational semantics for modelling transitively
immutable references.

▶ Simple polymorphic type system for modelling references
given an immutable type.

Untyped operational semantics

▶ Start with the untyped lambda calculus with records
(collections of mutable references).

▶ Add a new syntactic form, seal, which will wrap records
but pass through other values.

▶ Forbid writes to sealed records, and reads from sealed
records return sealed values.

▶ seals viewpoint adapt references at runtime to ensure
transitive immutability.

Untyped operational semantics

▶ Start with the untyped lambda calculus with records
(collections of mutable references).

▶ Add a new syntactic form, seal, which will wrap records
but pass through other values.

▶ Forbid writes to sealed records, and reads from sealed
records return sealed values.

▶ seals viewpoint adapt references at runtime to ensure
transitive immutability.

This is good:

⟨{x : 10}.x = 5, []⟩
−→ ⟨{x : 0x0001}.x = 5, [0x0001 : 10]⟩
−→ ⟨10, [0x0001 : 5]⟩

This is bad:

⟨(seal {x : 10}).x = 5, []⟩
−→ ⟨seal ({x : 0x0001}).x = 5, [0x0001 : 10]⟩
−→ gets stuck.

Transitive sealing

⟨(seal {y : {x : 10}}).y , []⟩
−→ ⟨seal ({y : {x : 0x001}}).y , [0x001 : 10]⟩
−→ ⟨seal ({y : 0x002}).y , [0x001 : 10, 0x002 : {x : 0x001}]⟩
−→ ⟨seal ({x : 0x001}), [0x001 : 10, 0x002 : {x : 0x001}]⟩

Equivalence lemmas
With this we can show the only way seals affect reduction is in
getting terms stuck. If two terms are equivalent modulo seals,
then they will reduce to equivalent terms or one will get stuck.

Equivalence lemmas

Definition
Let s be a term. Then let |s| be the number of seals in s.

Lemma
Let v be a value, σv be a store, t be a term such that v ≤ t,
and σt be a store such that σv ≤ σt .
If ⟨t, σt⟩ −→ ⟨t ′, σ′

t⟩ then v ≤ t ′, σv ≤ σ′
t , and |t ′| < |t|.

Lemma
Let s, t be terms such that s ≤ t and let σs , σt be stores such
that σs ≤ σt . If ⟨s, σs⟩ −→ ⟨s ′, σ′

s⟩ and ⟨t, σt⟩ −→ ⟨t ′, σ′
t⟩

then:

1. Either s ≤ t ′, σs ≤ σ′
t , and |t ′| < |t|, or

2. s ′ ≤ t ′ and σ′
s ≤ σ′

t .

Equivalence lemmas

Definition
Let s be a term. Then let |s| be the number of seals in s.

Lemma
Let v be a value, σv be a store, t be a term such that v ≤ t,
and σt be a store such that σv ≤ σt .
If ⟨t, σt⟩ −→ ⟨t ′, σ′

t⟩ then v ≤ t ′, σv ≤ σ′
t , and |t ′| < |t|.

Lemma
Let s, t be terms such that s ≤ t and let σs , σt be stores such
that σs ≤ σt . If ⟨s, σs⟩ −→ ⟨s ′, σ′

s⟩ and ⟨t, σt⟩ −→ ⟨t ′, σ′
t⟩

then:

1. Either s ≤ t ′, σs ≤ σ′
t , and |t ′| < |t|, or

2. s ′ ≤ t ′ and σ′
s ≤ σ′

t .

Types for sealed references

▶ Start with System F<:, for polymorphism and subtyping
(as immutable references are a supertype of mutable
references).

▶ How to model making references immutable though at
the type level, formally? Seals make term references
immutable.

▶ Add a type-level operator readonly for marking a
reference type read-only as well.

Small technical details...
▶ readonly String, readonly readonly String, etc,

are all equivalent types (under subtyping).

▶ Actually really annoying though to discharge this
equivalence.

▶ We show that every type has a normal form (with at most
1 top-level readonly) that is equivalent to it.

▶ Details in the paper.

Small technical details...
▶ readonly String, readonly readonly String, etc,

are all equivalent types (under subtyping).

▶ Actually really annoying though to discharge this
equivalence.

▶ We show that every type has a normal form (with at most
1 top-level readonly) that is equivalent to it.

▶ Details in the paper.

Standard Theorems

Lemma
Suppose ⟨s, σ⟩ −→ ⟨t, σ′⟩. If Γ | Σ ⊢ σ and Γ | Σ ⊢ s : T for
some type T , then there is some environment extension Σ′ of
Σ such that Γ | Σ′ ⊢ σ′ and Γ | Σ′ ⊢ t : T.

Lemma
Suppose ∅ | Σ ⊢ σ and ∅,Σ ⊢ s : T. Then either s is a value
or there is some t and σ′ such that ⟨s, σ⟩ −→ ⟨t, σ′⟩.

But what does this buy you?

Standard Theorems

Lemma
Suppose ⟨s, σ⟩ −→ ⟨t, σ′⟩. If Γ | Σ ⊢ σ and Γ | Σ ⊢ s : T for
some type T , then there is some environment extension Σ′ of
Σ such that Γ | Σ′ ⊢ σ′ and Γ | Σ′ ⊢ t : T.

Lemma
Suppose ∅ | Σ ⊢ σ and ∅,Σ ⊢ s : T. Then either s is a value
or there is some t and σ′ such that ⟨s, σ⟩ −→ ⟨t, σ′⟩.

But what does this buy you?

Using progress and preservation

▶ We already get that well-typed programs with sealed
references to mutable records won’t get stuck.

▶ Since writing to sealed forms gets you stuck, well typed
programs won’t write to sealed references, or references
marked immutable at the term level!

▶ But what of references marked immutable only at the
type level? Can we say anything about them?

Using progress and preservation

▶ We already get that well-typed programs with sealed
references to mutable records won’t get stuck.

▶ Since writing to sealed forms gets you stuck, well typed
programs won’t write to sealed references, or references
marked immutable at the term level!

▶ But what of references marked immutable only at the
type level? Can we say anything about them?

Equivalence lemmas

Definition
Let s be a term. Then let |s| be the number of seals in s.

Lemma
Let v be a value, σv be a store, t be a term such that v ≤ t,
and σt be a store such that σv ≤ σt .
If ⟨t, σt⟩ −→ ⟨t ′, σ′

t⟩ then v ≤ t ′, σv ≤ σ′
t , and |t ′| < |t|.

Lemma
Let s, t be terms such that s ≤ t and let σs , σt be stores such
that σs ≤ σt . If ⟨s, σs⟩ −→ ⟨s ′, σ′

s⟩ and ⟨t, σt⟩ −→ ⟨t ′, σ′
t⟩

then:

1. Either s ≤ t ′, σs ≤ σ′
t , and |t ′| < |t|, or

2. s ′ ≤ t ′ and σ′
s ≤ σ′

t .

Equivalence lemmas

Definition
Let s be a term. Then let |s| be the number of seals in s.

Lemma
Let v be a value, σv be a store, t be a term such that v ≤ t,
and σt be a store such that σv ≤ σt .
If ⟨t, σt⟩ −→ ⟨t ′, σ′

t⟩ then v ≤ t ′, σv ≤ σ′
t , and |t ′| < |t|.

Lemma
Let s, t be terms such that s ≤ t and let σs , σt be stores such
that σs ≤ σt . If ⟨s, σs⟩ −→ ⟨s ′, σ′

s⟩ and ⟨t, σt⟩ −→ ⟨t ′, σ′
t⟩

then:

1. Either s ≤ t ′, σs ≤ σ′
t , and |t ′| < |t|, or

2. s ′ ≤ t ′ and σ′
s ≤ σ′

t .

Equivalence lemmas

Definition
Let s be a term. Then let |s| be the number of seals in s.

Lemma
Let v be a value, σv be a store, t be a term such that v ≤ t,
and σt be a store such that σv ≤ σt .
If ⟨t, σt⟩ −→ ⟨t ′, σ′

t⟩ then v ≤ t ′, σv ≤ σ′
t , and |t ′| < |t|.

Lemma
Let s, t be terms such that s ≤ t and let σs , σt be stores such
that σs ≤ σt . If ⟨s, σs⟩ −→ ⟨s ′, σ′

s⟩ and ⟨t, σt⟩ −→ ⟨t ′, σ′
t⟩

then:

1. Either s ≤ t ′, σs ≤ σ′
t , and |t ′| < |t|, or

2. s ′ ≤ t ′ and σ′
s ≤ σ′

t .

Using those equivalence lemmas

▶ References typed readonly can be transparently sealed
without affecting typing!

▶ Progress and preservation ensure that the modified term
will reduce and not get stuck.

▶ Equivalence lemmas ensure that the modified program
and the original program reduce the same way. (modulo
extra seals in the modified program.)

Thank you!
Any questions?

