
to appear in ESEC-FSE'05, European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Sept. 2005, Lisbon

Detecting Higher-level Similarity Patterns in
Programs

Hamid Abdul Basit
Department of Computer Science

School of Computing
National University of Singapore

+65 6874 2834

hamid@nus.edu.sg

Stan Jarzabek
Department of Computer Science

School of Computing
National University of Singapore

+65 6874 2863

stan@comp.nus.edu.sg

ABSTRACT
Cloning in software systems is known to create problems during
software maintenance. Several techniques have been proposed to
detect the same or similar code fragments in software, so-called
simple clones. While the knowledge of simple clones is useful,
detecting design-level similarities in software could ease
maintenance even further, and also help us identify reuse
opportunities. We observed that recurring patterns of simple
clones – so-called structural clones - often indicate the presence
of interesting design-level similarities. An example would be
patterns of collaborating classes or components. Finding structural
clones that signify potentially useful design information requires
efficient techniques to analyze the bulk of simple clone data and
making non-trivial inferences based on the abstracted information.
In this paper, we describe a practical solution to the problem of
detecting some basic, but useful, types of design-level similarities
such as groups of highly similar classes or files. First, we detect
simple clones by applying conventional token-based techniques.
Then we find the patterns of co-occurring clones in different files
using the Frequent Itemset Mining (FIM) technique. Finally, we
perform file clustering to detect those clusters of highly similar
files that are likely to contribute to a design-level similarity
pattern. The novelty of our approach is application of data mining
techniques to detect design level similarities. Experiments
confirmed that our method finds many useful structural clones and
scales up to big programs. The paper describes our method for
structural clone detection, a prototype tool called Clone Miner that
implements the method and experimental results.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Restructuring, reverse engineering, and
reengineering; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval – Clustering.

General Terms
Algorithms, Design.

Keywords
Software clones, similarity patterns, clone detection

1. INTRODUCTION
Software maintenance is widely accepted as the most costly phase
of a software lifecycle, with figures as high as 80% of the total
development cost being reported for it [41]. Cloning is one of the
contributors towards this cost.

In the past decade, clone detection and resolution has got
considerable attention from the software engineering research
community and many clone detection tools and techniques have
been proposed [5][7][11][12][13][21][22][28][30][33]. So far,
clone detection has been focused on detecting similar code
fragments – so-called simple clones, with some gains in reducing
update anomalies and the software size. These gains, however,
can be improved by elevating the level of clone analysis. As
shown by our previous studies [10][4], clone analysis aided by
domain analysis can reveal design level similarities (so-called
structural clones), whose unification not only brings more size
reduction, but also helps in understanding the design of the system
for better maintenance and future enhancement.

The work presented in this paper is the first of its kind in
analyzing patterns of cloned fragments to infer design-level
similarities in a system. We started by formulating heuristics to
characterize patterns of simple clones that could indicate design-
level similarities. The data resulting from the detection of simple
clones in big software systems can be large and complex, making
manual application of heuristics hardly possible. We applied the
data mining approach to extract the most useful information
leading to the detection of closely interacting classes and modules,
as candidates for structural clones. Our experimentation has so far
focused on detecting some basic, but useful, types of design-level
similarities such as groups of highly similar classes or files. The
principle of our method, however, scales to finding many other
types of similarity patterns.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-9/05/0009…$5.00.

The original contribution of our work lies in formulating
heuristics for inferring design-level similarities based on patterns
of simple clones, and applying data mining approach to automate
making proper inferences. We also demonstrate that our method
finds useful design-level similarities and scales up to large
programs. Finally, our method also allows us to find complex
gapped clones (e.g., code fragments that differ in arbitrary

number, location and size of added/deleted code fragments),
which extends capabilities of existing token-based clone detection
techniques and tools that can find exact and parameterized clones
only.

We apply token based approach for the detection of simple clones.
It provides a suitable level of flexibility for the task by limiting
the language dependence, being resilient to the differences in code
layout, while providing a good mechanism for detecting
parameterized simple clones. Having transformed a source
program into a string of tokens, we compute the maximal repeats
in the string with a suffix array based algorithm [1]. These
maximal repeats, with some heuristic based pruning, form clone
classes. Although our detection of simple clones is much similar
to the previously published approach [22], the novel contribution
is in the introduction of a simple and flexible tokenization
technique, and the selection of efficient data structures and
algorithms for token string manipulation.

While clone analysis based on different metrics calculated for the
clones has been applied previously [22], the idea of clone pattern
mining is our original contribution. We can find clone patterns in
different units of code, either methods or classes or components or
modules, gaining useful insights into the cloning situation at
different levels of abstraction. We have initially tried this
approach at file level, by finding the frequently occurring clone
patterns in different files and analyzing those patterns, with
promising results.

By detecting the frequently co-occurring clone classes in different
files, we can isolate the groups of files that have strong similarity
with each other. This is achieved by a clustering algorithm that we
have devised for this particular problem. These clusters of highly
similar files form basic structural clones.

The remainder of this paper is organized as follows. After
describing the cloning problem in Section 2, we give the
motivation for Clone Miner in Section 3. Sections 4 and 5 discuss
our method for detecting simple and structural clones,
respectively. Section 6 describes the experimentation with the
prototype tool, while Section 7 gives the implementation details.
Related work and conclusions end the paper.

2. THE CLONING PROBLEM
Two code structures of considerable size are clones of each other
if there is significant similarity between them. The actual size and
similarity (which can be measured, for example, in terms of
percentage of repeated code) varies depending on the context, and
is left to human judgment. Clones may or may not represent
program structures that perform well-defined functions. The
above notions involve human judgment and are, therefore,
subjective in nature. Unfortunately, similarity is a multi-faceted
phenomenon that escapes precise definition.

Cloning is a common phenomenon found in almost all kinds of
software systems. Recently, this phenomenon has caught
considerable attention from the research community. Cloning is
believed to have a negative impact on the maintenance of large
software systems.

Most of the interesting clones, particularly those at the higher
level (so called structural clones), are similar but not identical.
Changes among clones result from differences in intended
behavior, and from dependencies on the specific program context

in which clones are embedded (such as different names of
referenced variables, methods called, or platform dependencies).

Reuse in object-oriented systems is made possible through
different mechanisms such as inheritance, shared libraries, object
composition, and so on. Still, programmers often need to reuse
components which have not been designed for reuse. This may
happen during the initial systems development and also when
these software systems go through the expansion phase and new
requirements have to be satisfied. In these situations, the
programmers usually follow the low cost copy-paste technique,
instead of costly redesigning-the-system approach, hence causing
clones. This type of code cloning is the most basic and widely
used approach towards software reuse. Several studies suggest
that as much as 20-30% of large software systems consist of
cloned code [5][33].

Programmers may also clone code to speed up development and
maintenance, especially when the new requirement is not fully
understood and a similar piece of code is present in the system.
Cloning may also be linked to LOC-based performance appraisals
and the fact that cloning is considered safe as having little
unplanned effect on the original code, as the original code is not
modified and simply copied at another place. Sometimes, cloning
is done to increase the robustness of life-critical systems, for
better performance, or to minimize dependencies among
developers in large projects, or to port the application to another
hardware platform. Poor design and ad hoc maintenance also
induce clones. Clones are also created by code generation tools, or
by following a coding style. Finally, some clones may just appear
accidentally.

While there are good reasons for creating certain clones, most of
them, independently of the reasons why they occur, are counter-
productive for future maintenance, as they increase the risk of
update anomalies (inconsistencies in updating clone instances).
When a cloned fragment is to be changed, a programmer must
find and update all the instances of it consistently. The situation is
further complicated if an affected fragment must be changed in
slightly different ways, depending on the context. With excessive
cloning, evolution and further development (Maintenance)
become prohibitively expensive. Clones may also form implicit
links between components that share some functionality. All this
contributes towards “software aging” [36].

We distinguish two types of clones, namely:

Simple clones: contiguous segments of similar code such as class
methods, or fragments of method implementation, and

Structural clones: patterns of inter-related classes emerging from
design and analysis spaces; patterns of components at the
architecture level; design solutions repeatedly applied by
programmers to solve similar problems (so-called “mental
templates” [7]).

Different types of simple clones have been discussed in literature.
An exact clone is a fragment of code that is identical to another
one. Parameterized clones are defined as “code sections that
match except for a one-to-one correspondence between candidates
for parameters such as variables, constants, macro names, and
structure member names” [6]. Some other authors do not consider
strict one-to-one relationship between the parameters of two
cloned portions and their treatment of parameterized clones is
more general [22]. A gapped clone is a code fragment that is an

 2

exact or a parameterized clone of another, but has some extra or
missing code that cannot be parameterized.

The clones discussed above are simple code level clones that
consist of a single chunk of code cloned at different places, with
the exception of gapped clones, which can also be a manifestation
of the structural clones, as will be explained later.

Recurring problems of a similar structure in analysis and design
spaces may lead to structural clones. Analysis patterns [14] and
design patterns [15] exemplify these situations. Structural clones
often represent repeated patterns of simple clones. For example,
Figure 1 shows a pair of structural clones our industry partner
(SES Systems Pte Ltd) found in a real C# system. These clones
arose from the following situation: The system was based on over
20 domain entities such as User or Task. The design and
implementation of operations (such as Create) for various entities
were characterized by a similar pattern of collaborating classes
across GUI, service and database layers. Each box in Figure 1
represents a number of classes, with much similarity across
classes implementing similar concepts in the same types of
operations for different entities.

Figure 1. A pair of structural clones

Despite striking similarities, SES could not design a generic
solution for groups of operations such as CreateUser and
CreateTask. To implement generic operations for domain entities,
SES would have to first unify groups of classes in GUI, Service,
Entity and DB layers such as Create[entity-type]Form,
Update[entity-type]Form, etc. However, the nature of variations in
business logic across operations for different entity types was
such that neither inheritance nor type parameters (such as in
generics proposed for C# [25]) could be used to implement
operations in generic way. Therefore, in the C# subsystem, SES
had to repeat the same design/implementation steps for all the
domain entities and their respective operations.

3. MOTIVATION FOR CLONE MINER
Our requirements for clone detection differ from other tools and
techniques. We wish to detect both simple and structural clones
(such as the one shown in Figure 1), allowing a vast range of
differences between them.

Simple clones that are of our interest can differ in type
parameters, keywords, variable/constant names, operators –
actually any details of algorithms, declarations or function
signatures. In particular, two similar fragments might be edited by
a programmer in arbitrary ways, e.g., by modifying some section,
or inserting/deleting certain lines of code.

The simplest form of a structural clone is a class. We are
interested in classes differing in details of method
implementation, method signatures, or the order in which methods
are listed in the class body. If a class contains extra methods as
compared to other similar classes, we could still consider such
classes as structural clones. Beyond similar classes, we are also
interested in patterns of classes/components that display
similarities.

The reason why we are interested in such vast range of similarities
is that our goal for clone detection is to unify clone classes with
generic design solutions. We build generic design solutions with a
meta-level method, called XVCL [42], which is capable of
unifying both simple and structural clones, even with a wide range
of differences among them [4][18]. With XVCL meta-structures,
we would like to unify any similarity patterns whose unification is
deemed beneficial from the engineering point of view (e.g., leads
to simpler programs that are easier to maintain or reuse due to
non-redundancy).

Existing techniques for clone detection solely focus on simple
clones. Furthermore, these techniques can only find exact clones
or clones differing in parametric ways.

Our goal is to overcome these limitations. We expect Clone Miner
to detect candidates for simple and structural clones that meet
certain similarity threshold (as explained later in the paper). Such
clone candidates would be examined by an analyst who would
then decide which ones are suitable for unification with generic
design solutions. Ideally, information about accepted clones could
be fed to the Clone Miner for further processing, in order to find
higher-level clones based on lower-level ones. Therefore, the
clone detection process that we envision would lead from simple
clones to structural clones, possibly at a number of abstraction
levels (up to the level of software architecture).

4. DETECTION OF SIMPLE CLONES
In Clone Miner, we have implemented the token based detection
of simple clones. Although the token similarity computations are
expensive, yet token based approach gives certain advantages
over other techniques.

With negligible amount of pre-processing, clone detection based
on raw text is language independent and free of pre-processing
overhead, but is very sensitive to the small differences that may be
present between two very similar code fragments. It can only find
the exact clones, and cannot be used for parameterized clone
detection.

On the other hand, parse tree or syntax tree comparison based
clone detection becomes too language dependent, and strongly
tied to the specific flavor of the given language. Similarly, metrics
based techniques are also language dependent but their major
restriction is on the granularity of the clones i.e., only functional
or class level clones can be detected. Hence we have chosen the
token-based approach, that lies somewhere in the middle of the
pre-processing spectrum.

After tokenizing the input source code files, a single token string
is generated. Efficient suffix array based repeat finding algorithm,
with some language-specific, heuristics based optimizations, is
implemented to detect clones.

 3

4.1 Tokenization
As explained previously, our requirements for clone detection
differ from the other tools and techniques. Hence, we propose a
customizable tokenization strategy. In this scheme, a separate
integer ID is assigned to each token class found in the source
code. The classification of tokens is totally customizable. For
example, if the user does not want to differentiate between the
types {int, short, long, float, double}, we can have the same ID to
represent every member of the above set of types.

An important parameter that the user needs to adjust for clone
detection is the minimum length of the clones. If this threshold
value is too large, few clones are reported. On the other hand, if
the threshold value is too small, a large number of clones are
reported, many of them being so small that no meaningful clone
unification can be applied. In CCFinder [22], the default value is
set to 30 tokens, but in Clone Miner, it is advised to set a smaller
threshold value to facilitate the detection of structural clones.
Several small clones may form a bigger gapped clone, having
multiple gaps of arbitrary sizes, and it will be reported as a clone
pattern in the next stage of clone pattern mining.

The sequence, in which the input files are read in, is not relevant
to clone detection. Clones crossing these file boundaries are not
meaningful in terms of clone unification as this ordering may be
random and with another ordering of the input files, such clones
may not be detected. To curb this straddling of files boundaries by
clones, the boundaries for files are marked by unique sentinel
tokens that are never repeated in the token string. This ensures
that the clones never cross a file boundary. These sentinel tokens
increase the alphabet size, but the string algorithms are so selected
that this effect is only marginal. Detection of file boundaries is
straightforward as each file is read in separately.

Method boundaries are also detected by an online finite state
machine (FSM), but they are not marked, since we are not
restricted by method boundaries for clone unification using
XVCL. Several small methods may form a bigger clone, which
may not be detected if the method boundaries are marked by
unique sentinel tokens. We plan to use this functionality in future
for method based clone pattern analysis.

4.2 Finding Clones
Here we reproduce the definitions of a few important clone related
terms given in [22]:

“A clone relation is an equivalence relation (i.e., reflexive,
transitive, and symmetric relation) on code portions. A clone
relation holds between two code portions if (and only if) they are
the same sequences. For a given clone relation, a pair of code
portions is called clone pair if the clone relation holds between
the portions. An equivalence class of clone relation is called clone
class. That is, a clone class is a maximal set of code portions in
which a clone relation holds between any pair of code portions.”
(We have used the terms clone and clone classes interchangeably
whenever it did not lead to confusion.)

The detection of all clone classes corresponds directly with the
computation of all non-extendible ‘repeats’ in a string, when the
code is represented by a string of tokens. The sentinels for method
and file boundaries make sure that no ‘repeat’ crosses these
boundaries. The algorithm for finding these non-extendible
‘repeats’ returns the output in terms of the indexes in the token

string for beginning and ending of the repeat. This information
has to be translated into file name, line number and column
number to be useful for the user and to be projected on the source
code browser. For this purpose, information for line number and
column number for each token is stored separately.

The basic output from the Clone Miner gives the number of total
clone classes found and the details for each clone class. This
includes its length in tokens, number of clone instances (members
of this clone class), file ID for each clone instance, its beginning
line number and column number, and its ending line number and
column number. A sample is shown in Figure 2.

CLONE CLASS ID : 24

LENGTH : 32 TOKENS

MEMBERS : 2

FILE
ID

START
LINE

START
COLUMN

END
LINE

END
COLUMN

10 462 19 464 5
15 894 18 896 5

Figure 2. Basic clone class information
This means clone class 24 is 32 tokens long and has 2 members.
The first member is present in file 10 starting at line 462 and
column 19 and ending at line 464 at column 5. The second row is
interpreted in a similar way. The information about the column
numbers is very useful for the Clone Miner GUI as it gives the
exact location of the beginning and ending of the clone instance in
the file.

Initialization lists for tables and arrays in Java have to be ignored
completely as they serve no purpose in clone unification. They are
simply lists of different values that are mistakenly detected as
clones because they represent the same token class (e.g., integer
values). For detecting these initialization lists, we just need to
detect beginning token sequence “={“ and its corresponding
ending braces “}”, which can be easily done by a small finite state
machine working online, while the input source files are being
read.

5. MINING FOR STRUCTURAL CLONES
Having detected individual clone classes, we move on to the
detection of higher level similarity patterns based on the data
gathered in the previous stage. The first step is to represent this
data in a suitable format to facilitate comparison of different
bigger units of code like files or classes. Since, in Java, each file
contains one class (considering the nested and inner classes as part
of the outer class), currently, we only perform this comparison
based on files.

By finding clones that occur together frequently in different files,
we get more insight into the cloning scenario of the system under
analysis. Then we extract significant clone patterns for further
detailed manual analysis. These steps are discussed next.

5.1 Finding Frequent Clone Patterns
Once the simple clones have been detected, the data is
transformed into a format that lists down all the clone classes
represented in each file. This information is presented to the user.
But more importantly, this information is used as the input for the

 4

data mining phase of detecting structural clones. A sample extract
of this format is shown in Figure 3. The first row says that the file
with file ID 12 contains three clone instances belonging to clone
class 9 and one instance from each of the clone classes 15, 28, 38,
and 40. The interpretation is likewise for the other rows.

FILE ID CLONE CLASSES PRESENT

… …
12 9, 9, 9, 15, 28, 38, 40
13 12, 15, 40, 41, 43, 44, 44
14 9, 9, 9, 12, 15
… …

Figure 3. Clones per file
The first stage of detecting structural clones is the detection of
recurring patterns of simple clones in different files. Here, we
apply the “market basket analysis” technique from the Data
Mining domain. The idea behind this technique is to find the items
that are usually purchased together by different customers from a
departmental store. The input database consists of a list of
transactions, each one containing items bought by a customer in
that transaction. The output consists of identifying those groups of
items that are most likely to be bought together. The analogy here
is that the files represent the transactions and the clone classes
represented in that file are the items of that transaction. Our
objective is to find all those groups of clone classes whose
instances occur together in different files. These patterns of clone
classes will act as the unique representation for a group of files,
and depending upon its significance in terms of files’ coverage,
will lead to identifying groups of highly similar files. This will be
our basic structural clone.

ALGORITHM FOR FINDING FILES CONTAINING
THE CLONE PATTERN

For each clone pattern:
1. Take the first clone class
2. List all files that contain

instances of this clone class
3. For each clone class:

a. If it does not contain all
the clones of the pattern,
prune it from the list

4. Output the final list

Figure 4. Algorithm for finding files having the clone pattern
Market basket analysis is based on “frequent itemset mining
(FIM)”. The difference between our data and the expected data
format for frequent itemset mining is that in FIM, the items in a
transaction are considered unique, whereas in our data, one file
may contain multiple instances of a clone class. There can be the
possibility to normalize the data, by removing the duplicates, but
by doing so, we miss out important information, as multiple
occurrences of the instances of the same clone class in different
files is a valid pattern of clones. For example, 9, 9, 9, 15 is a valid
clone pattern represented in File 12 and File14 in Figure 3.

To normalize the data, Clone Miner transforms the data to make
all the clones present in a file unique. For this, our technique is
based on the following heuristic assumption; in a given file, not
more than N instances of a clone class can be present. We
multiply each clone class by N and add the index number of the

clone in this file to the result. For example, in the case shown in
Figure 3, the transformed data will be like Figure 5 with N = 100.

FILE ID CLONE CLASSES PRESENT

… …
12 900, 901, 902, 1500, 2800, 3800, 4000

13 1200, 1500, 4000, 4100, 4300, 4400,
4400

14 900, 901, 902, 1200, 1500
… …

Figure 5. Transformed clones per file
Now the result from FIM will include 900, 901, 902, 1500, which,
after reverse transformation of dividing by 100 and rounding
down the result, becomes 9,9,9,15, i.e., reflecting the exact
scenario.

Another observation here is that mining all frequent itemsets
returns many frequent itemsets that are subsets of bigger frequent
itemsets. So the correct solution in our case is to perform
“Frequent Closed Itemset Mining” (FCIM), where only those
itemsets are reported which are not subsets of any bigger frequent
itemset.

Because of the nature of the data mining problem, the algorithm is
tuned to adjust the minimum support level for FCIM. For our
problem, we have hard coded this to be 2, so that it will report a
clone pattern, even if it is present only in 2 files as it could be
significant for maintenance based on its size.

FREQUENT CLONE PATTERN SUPPORT

9,9,9,15 2
60 44 40 42 3 49 59 63 4

… …
Figure 6. Sample frequent clone patterns with SUPPORT

The output from this stage is in the format shown in Figure 6.
Each row represents one clone pattern along with its support
count, indicating the number of files containing this clone pattern.
In Figure 6, the first clone pattern is present in 2 files, whereas the
second one is present in 4 files.

Although this information is very useful, one important piece of
information missing here is the identification of those files that
contain these patterns. With some extra processing, Clone Miner
finds this information as well. The algorithm is presented in
Figure 4.

5.2 Clustering Highly Cloned Files
The recurring patterns of simple clones found in the previous
stage may or may not be significant. The significance of the clone
patterns is subject to the user’s judgment. A lot of clone patterns
found by the above method may not be significant in terms of file
coverage, and there could also be multiple clone patterns
represented in a single file. However, all of these clone patterns
are still useful, as each one represents an unrestricted gapped
clone, where any number of gaps are allowed with arbitrary size
and ordering.

Some of these clone patterns could be quite significant and cover
a considerable part of some files. Such clusters of files that are

 5

covered by a significant clone pattern form the basic structural
clones, and may also indicate higher design level similarities that
can be extracted with proper domain analysis.

To measure file coverage by a clone pattern, we calculate two
metrics, namely the File Percentage Coverage (FPC), which
indicates the percentage of a file covered by a clone pattern, and
the File Token Coverage (FTC), which tells the number of tokens
in a file covered by the clone patter, for each file containing the
clone pattern. The complication here is that some clones may
overlap in a file, so we cannot simply add up the size of all clones
in a pattern to find the file coverage. The algorithm currently
implemented in Clone Miner makes use of a bit vector equal to
the size of the file (in tokens), with all bits initially set to false.
For each clone of the clone pattern, the corresponding bits in the
token file are set and the final count of the set bits gives the file
coverage. This is an expensive processing in terms of time
because each clone pattern may have several clones and each
clone pattern may be represented in several files. It also involves a
lot of redundancy as the same clone may be a part of several clone
patterns and the same file may be processed again and again. We
plan to do some optimizations to this algorithm in future. The
output is in the format given in Figure 7.

The first two rows in Figure 7 depict the clone pattern as
explained above. The last two lines give the file ID with the FPC
and FTC values for each file.

CLONE PATTERN 9,9,9,15

SUPPORT 2

FILE ID FTC FPC
12 1175 29%
14 1175 50%

Figure 7. Frequent clone pattern with file coverage
We now have to decide which clone patterns among those found
previously signify clusters of highly similar files. The first
consideration is again to represent the data in a suitable format.
Instead of representing files, we start by representing clusters. We
do not expect that all files may be part of some high level
structural clone and should be detected as part of a cluster. Hence
a lot of files may have to be ignored as outliers when clustering.
This is different from other approaches, where it is assumed that a
majority of data points belong to clusters and a few would be
detected as outliers. This approach is also called cluster mining as
compared to clustering.

We start by considering each clone pattern as a different cluster,
where the clone pattern acts as the description of the cluster. The
FPC and FTC indicate the significance of each cluster. The user
specifies a minimum FPC and FTC value to indicate the
significance of a cluster. The cluster will be considered significant
even if one file has the FPC or FTC value greater than threshold
values. The expected output is to find all the significant clusters
that cover maximum number of files and no file is preferably
repeated in two clusters.

Our clustering algorithm only involves iterative pruning of
clusters as shown in Figure 8.

6. EXPERIMENTATION
We performed a number of tests on different parts of J2SE 1.5
[19] source code with interesting and useful results. One detailed
analysis of the Java Buffer Library (java.nio.* package of J2SE
1.5) with Clone Miner is presented here. In previous case study
[10], we have already analyzed the structure of this library in
detail and have found considerable code and design level cloning
in it. Therefore, by choosing java.nio.* package, we could easily
validate if the results of automatic clone detection by Clone Miner
were relevant, that is, if they revealed significant and useful
similarities.

ALGORITHM FOR CLUSTER PRUNING

REQUIRE : initial clusters
INPUT : min FPC, min FTC

1. Prune all the clusters with FPC of

all files < min FPC and FTC of all
files < min FTC

2. Sort clusters based on the SUPPORT
a. Secondary sort on max. FPC of

all constituent files when
SUPPORT is same

3. Starting from the smallest cluster,
Prune clusters whose constituent
files are all present in another
cluster

4. Starting from the smallest cluster,
prune clusters whose constituent
files are all present in any other
cluster.

Figure 8. Algorithm for cluster pruning

A buffer contains data in a linear sequence for reading and
writing. Buffer classes differ in features such as a buffer element
type, memory allocation scheme, byte ordering, and access mode,
as shown in Table 1. Each legal combination of features yields a
unique buffer class. That is why, even though all the buffer
classes play essentially the same role, there are 74 classes in the
Java Buffer library.

Table 1. Features in the Buffer Library

LEVEL IN
CLASS

HIERARCHY

FEATURE
DIMENSION

FEATURES

level 1 buffer data
element type

byte, char, int,
float double, long,

short
level 2 memory

allocation
scheme

direct, nondirect

level 2 byte ordering native, non-native,
Big_endian,
Little_endian

level 3 access mode writable, read-only

With manual domain analysis, it was found that the 71 buffer
classes (all classes except Buffer, MappedByteBuffer,
StringCharBuffer) can be clustered into 7 groups of similar
classes. Members from each of these groups combine to form a

 6

repeating structure of collaborating classes (a structural clone).
The description of these groups is as follows [10]:

1. [T]Buffer: contains 7 buffer classes of type T. T denotes one
of the buffer element types, namely, Byte, Char, Int, Double,
Float, Long, Short.

2. Heap[T]Buffer: contains 7 Heap classes of type T.

3. Direct[T]Buffer[S|U]: contains 13 Direct classes. U denotes
native and S - non-native byte ordering.

4. Heap[T]BufferR: contains 7 Heap read-only classes.

5. Direct[T]BufferR[S|U]: contains 13 Direct read-only classes.

6. ByteBufferAs[T]Buffer[B|L]: contains 12 classes providing
views T of a Byte buffer with different byte orderings. T here
denotes buffer element type except Byte. B denotes
Big_endian and L - Little_endian byte ordering.

7. ByteBufferAs[T]BufferR[B|L]: contains 12 read-only
classes providing views T of a Byte buffer with different
byte orderings (B or L). T here denotes buffer element type
except Byte. B denotes Big_endian and L - Little_endian
byte ordering.

By performing the simple clones’ analysis of the Buffer Library
with Clone Miner, a total of 102 clone classes were detected, with
the minimum clone size of 20 tokens. As expected, the clones
were distributed in all the files.

46 clone patterns were discovered by the FCIM algorithm when it
was run on the data file containing the clones listed in terms of
files. These patterns formed the initial 46 clusters. In the first
iteration of the cluster pruning phase, 18 insignificant clusters
were pruned leaving 28 significant clusters, each having at least
one file that is covered more than 50% by the clone pattern
describing that cluster. In the second iteration, 13 of the
significant clusters were also pruned because all their constituent
files were totally represented in some other cluster. After the third
and final iteration, another 8 clusters were pruned because the
files representing them were present in other clusters as well,
leaving behind only 7 clusters. These 7 clusters match exactly
with the 7 groups of similar classes that were found manually as
mentioned before. This means that by performing only minimal
domain analysis based on the output from Clone Miner, the
generic representation of the whole Buffer Library can be
formulated.

We also analyzed other parts of the J2SE 1.5 with Clone Miner
with some very useful results. Table 2 presents a summary of the
significant basic structural clones that were found in J2SE 1.5
with different values of FPC and FTC. A manual inspection of the
results indicates that the file clusters found by Clone Miner
actually indicate significant cloning between the files clustered
together. Most of the times, the design similarity was evident from
the file names. For example, the files

! OpenMBeanAttributeInfoSupport.java (FTC 1305 tokens,
FPC 87.6427%) and

! OpenMBeanParameterInfoSupport.java (FTC 1275 tokens,
FPC 91.5948%)

are detected as a cluster in package javax.management.
openmbean.*. The cloning in the files could be easily verified

with manual inspection. Although other tools with metrics value
comparison for different files may also detect such groups of files,
the advantage of Clone Miner is that it builds this information
incrementally, and at each step all the previous-level information
is also available that gives the details of cloning. While comparing
the above two files, for example, the user also knows which
chunks of code is cloned between the two files and what is the
location of those clone instances in each file. A GUI for Clone
Miner, that is an ongoing project, will greatly enhance the
usefulness of this feature.

Similarly, the 14 files with the same name of ObjectFactory.java,
that are duplicated intentionally for each JAXP sub package in
com.sun.org.apache.* package are also detected by Clone Miner
as a cluster of 14 files having an FPC of almost 98% and an FTC
of 1319 tokens each. The fact that the files are in fact exact
duplicates of each other is revealed upon reading the comments
inside the files.

Further analysis may lead to the detection of even higher-level
similarities between the different clusters detected by the tool and
is part of our future work.

Table 2. Clone cluster analysis of J2SE 1.5

MIN. FPC MIN. FTC NO. OF
CLUSTERS

NO. OF
FILES

50% 35 471 2620
50% 500 95 298
50% 1000 45 185
90% 35 188 1012
90% 500 42 183
90% 1000 23 95

The results shown in Table 2 indicate that significant gains can be
achieved by unifying groups of highly similar classes at the meta -
level, both in terms of code reduction as well as in terms of design
understanding. Properly representing groups of similar classes,
with clearly identifying the similarities and differences, helps
greatly in better understanding the design and facilitate further
changes, easing the maintenance.

7. TOOL IMPLEMENTATION
 The Clone Miner is implemented in C++ with the extensive usage
of container classes from STL for efficient manipulation of data.

The lexical analyzer for Clone Miner is built with ANTLR [3].
Only one pass over the source code is required to tokenize the
input source code.

We achieve the variable tokenization flexibility in the reverse
way. Our lexer generates a very refined tokenization with 115
token classes for Java source code, and then allows the user to
specify the equivalence of the different input tokens to facilitate
detection of parameterized clones. Since the clone detection
algorithm only detects exact string repeats, the parameterized
clones are converted to exact clones by tokenization and token
equalization. Primitive Java types like int, float, long, double can
be easily parameterized and hence should be treated as same.
Similarly other possibilities are operators like +,-, /,* etc. and
keywords like ‘public’ or ‘private’.

 7

The user can also choose to suppress some token classes. For
example, if keywords like ‘const’ are to be ignored, their
respective token number will not appear in the token string.

The detection of the short repetitive fragments, as discussed later
in the related work section, is done before running the repeat
finding algorithm. It involves reading the suffix array and
computing the difference between each pair of consecutive entries
of the suffix array. If this distance is being duplicated for some
pairs, we mark it as a repetitive section. This section continues
until the distance between the consecutive pairs of suffixes of the
string remains the same. A bit-vector is used to store this
information. For every token that is a part of a repetitive section,
the bits are set, while for the rest of the code, the bits are unset.
When the clones are being detected, the sections of tokens
corresponding to set bits in the bit-vector are ignored.

We have chosen the best algorithms available for the different
tasks in the system. The system is designed in such a way that it
works with the standard algorithms. Different implementations of
these standard algorithms can be simply plugged into the system
with minimum configuration. We have incorporated the string
matching based on suffix arrays instead of suffix trees considering
their space efficiency [32]. Although there are 3 new algorithms
published in 2003 for linear time construction of suffix array
[23][26][26], empirical studies have shown that they are not as
fast in practice as the previously known O(n log n) algorithm [31]
which we have chosen for our system. These results are presented
in [38][39]. For efficiently finding the repeating parts of the
string, the suffix array has to be enhanced by a supporting array
called the Longest Common Prefix (LCP) array. For LCP array
creation, we are using the algorithm “GetHeight” presented in
[24].The algorithm “NERF” (Non-Extendible Repeats Finder)
used for non-extendible repeats finding is similar to the maximal
pairs finding algorithm presented in [1]. For FCIM, currently we
are using the algorithm from [16].

We performed several trial runs of Clone Miner on full J2SE 1.5
source code consisting of 6558 source files and around half a
million LOC, on a Pentium IV machine with 3.0 GHz processor
and 1 GB RAM. Each time it took less than 3 minutes to run the
whole process from finding simple clones until the final cluster
pruning. A total of 22,221 clone classes were detected with the
minimum clone size of 35 tokens. These were condensed into
13,262 clone patterns, from which we can select the significant
ones depending upon the threshold values for FPC and FTC after
the 3 layer pruning.

8. RELATED WORK
Different techniques have been deployed for the detection of
simple clones. They can be broadly categorized based on the
program representation and the matching technique. For program
representation, the different options are plain text [13][21],
tokens[5][22], abstract syntax trees[7], program dependence
graphs [29][30], and metrics for code structures [28]. The
different matching techniques include suffix tree based token
matching [22], text fingerprints matching [21], metrics value
comparisons [28], abstract syntax trees comparisons [7], dynamic
pattern matching [28] and neural networks [12].

Our clone detection technique is similar to the one employed by
CCFinder [22]. Many of the heuristics used in CCFinder are
implemented in Clone Miner as well.

CCFinder is easily configurable to read input in different
programming languages like C, C+, Java and COBOL. A suffix-
tree matching algorithm is used for the discovery of clones. Some
optimizations are applied to reduce the complexity of token
matching algorithm.

These optimizations include the alignment of token sequences to
begin at tokens that mark the beginning of a statement like #, {,
class, if, else etc. Considering only these tokens as leading tokens
reduces the resulting suffix tree size to one-third. Another
optimization is the removal of short repeated code segments from
the input source like case statements in switch-case constructs and
constant declarations. Very large files are truncated and “divide-
and-conquer” strategy is applied to find duplicates in them.

In contrast to Clone Miner, CCFinder finds the clone pairs and
then merges them to form clone classes. In Clone Miner, instead
of maximal pairs, the maximal repeats are found directly, with
similar space and time complexity. This saves the overhead of
forming clone classes from clone pairs.

Dup is another token based clone detection tool [4]. It finds
identical clones as well as strictly parameterized clones, i.e.,
clones that differ only in the systematic substitution of one set of
parameter values for another. These parameters can be identifiers,
constants, field names of structures, and macro names but not
keywords like while or if. The tool is text- and token-based and
the granularity of clones is line-based where comments and white
spaces are not considered. The algorithm used in this tool is based
on a data structure called parameterized suffix tree [6], which is a
generalization of a suffix tree. Dup is developed in C and Lex and
only C code can be processed through Dup.

For finding maximal parameterized matching, Dup’s lexical
analyzer generates a string of one non-parameter symbol and zero
or more parameter symbols for each line. The parameter and their
positions are recorded in this parameterized string. This string is
encoded in such a way that the first occurrence of each parameter
is replaced by 0 and every later occurrence is replaced by the
distance in the string since the previous occurrence. Non-
parameter symbols are left unchanged. This tokenization scheme
ensures the strict parameterization requirement of Dup. The
clones detected by Dup cannot cross file boundaries but can cross
function boundaries.

With the experience gained from the clone analysis of different
software, it was observed that some short repeated segments of
code turn up as multiple clone classes which are not very useful
[22]. In Dup, these fragments of code had to be removed by hand.
In CCFinder, the first 2 repetitions are reported and the rest are
ignored. We have taken a different approach in Clone Miner. We
do not report these short repetitions as clone classes, but rather we
report them separately as repetitions.

There is also strong connection between this work and the work
done previously on the design recovery and program
understanding of large legacy systems for ease of maintenance
and reuse [8][9]. Clones, especially clusters of cloned files as
found by our approach, provide useful insights into the program
structure for better understanding of the program. We expect that
some of the structural clones may hint at important concepts
behind a program. The contribution of clone detection towards
program understanding is also discussed in [20].

 8

9. CONCLUSION AND FUTURE WORK
In this paper, we described our strategy for detecting design-level
similarity patterns, so-called structural clones, in programs. We
apply token-based method to find simple clones first. For this, we
use efficient suffix array based maximal repeats finding
algorithm. Then, we apply data mining techniques to infer
structural clones from simple clone data. With frequent closed
itemset mining, we find the frequently occurring patterns of
clones in different files. These patterns represent a clustering of
files based on the similarity present among them. Finally, we
perform a customized file clustering to extract the significant
clusters, thereby filtering out the files that may contribute to a
design level similarity pattern or structural clone.

We designed a tool prototype, called Clone Miner, which
implements our clone detection strategy. Experiments have shown
that our method and tool can successfully find useful design-level
similarity patterns, candidates for unification with generic design
solutions. Programs after such unification are easier to understand,
modify and reuse.

To our best knowledge, the method described in this paper is the
first attempt to detect design-level similarity patterns, beyond
simple clones. It is also the first attempt to apply data mining
techniques in the context of clone detection problem.

Currently, we have applied our method to detect basic forms of
structural clones, namely similar classes, files and complex
gapped clones. The flexibility in our method allows us to extend it
for finding other, more complex types of similarity patterns by
performing similar analysis at methods, classes, modules or
components level. Extending our method and Clone Miner for
such context and experimentation with recovery of higher-level
design similarities in various application domains is the top
priority for our on-going work.

Just like any design analysis activity, and also as any data mining
application, clone detection is facilitated greatly with proper
visualizations. Hence developing a graphical user interface for the
Clone Miner is at the top of our priority list for future work. The
visualizations will include browsing the source code detected as a
clone instance, with the differences highlighted between the
different instances of a clone class.

Another important aspect of extending the clone detection is to
cater for multiple languages. Currently, only Java source can be
analyzed, but extending the system to support other languages can
be easily incorporated because of the flexible design of the
system. The only language dependant part of the clone detector is
the lexical analysis and some language specific heuristics to
optimize clone detection. Once the token string is generated, the
remaining steps would all be identical. A challenging feature
would be to provide multiple language facility within the same
system, i.e., to cater for software systems that are written in
multiple languages like the web applications.

From the discussion on cluster mining, it is evident that real life
clustering problems may have different and complex requirements
as compared to the theoretical problems discussed in the literature.
Sometimes we may require a unique solution tailored only for the
given problem.

10. ACKNOWLEDGEMENTS
Many thanks are due to the following people for their invaluable
support and guidance at different stages of the research and
development: Bill Smyth, Simon Puglisi (for providing the
implementation of the NERF algorithm and several useful
suggestions), Katsuro Inoue, Toshihiro Kamiya, and Damith
Chatura Rajapakse.

11. REFERENCES
[1] Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E. The

enhanced suffix array and its applications to genome
analysis. In Proc. Workshop on Algorithms in
Bioinformatics, in Lecture Notes in Computer Science, vol.
2452, Springer-Verlag, Berlin, 2002, pp. 449–463.

[2] Abouelhoda , M. I., Ohlebusch, E., and Kurtz, S. Optimal
Exact Strring Matching Based on Suffix Arrays. In
Proceedings of the 9th International Symposium on String
Processing and Information Retrieval, pages .31-43.
September 11-13, 2002.

[3] ANTLR website at http:// www.antlr.org
[4] Basit, H. A., Rajapakse, D. C., and Jarzabek, S. Beyond

Templates: a Study of Clones in the STL and Some General
Implications. In Proceedings of the 28th Intl. Conf. on
Software Engineering (ICSE'05)(to appear). 2005. Draft
available at http://xvcl.comp.nus.edu.sg/xvcl_cases.php

[5] Baker, B. S. On finding duplication and near-duplication in
large software systems. In Proc. 2nd Working Conference on
Reverse Engineering. 1995, pages 86-95.

[6] Baker, B. S. Parameterized Duplication in Strings:
Algorithms and an Application to Software Maintenance.
SIAM Journal of Computing, October 1997.

[7] Baxter, I., Yahin, A., Moura, L., and Anna, M. S. Clone
detection using abstract syntax trees. In Proc. Intl.
Conference on Software Maintenance (ICSM ’98), pp. 368-
377.

[8] Biggerstaff, T.J. Design Recovery for Maintenance and
Reuse. Computer 22(7), pp. 36-49, (July 1989).

[9] Buss, E., Mori, R. D., Gentleman, W., Henshaw, J., Johnson,
H., Kontogiannis, K., Merlo, E., Muller, H., Paul, J. M. S.,
Prakash, A., Stanley, M., Tilley, S., Troster, J., and Wong,
K., “Investigating reverse engineering technologies for the
CAS program understanding project”, IBM Systems Journal,
33(3):477-500, 1994.

[10] Case Study: eliminating redundant codes in the Buffer
library. At XVCL Website,
http://xvcl.comp.nus.edu.sg/xvcl/buffer/index.htm

[11] Church, K. W. and Helfman, J. I. Dotplot: A program for
exploring self-similarity in million of lines of text and code.
Journal of Computational and Graphical Statistics, June
1993, 2(2):153-174.

[12] Davey, N., Barson, P., Field, S., Frank, R., and Tansley, D.
The development of a software clone detector. International
Journal of Applied Software Technology, 1(3-4): 219-236,
1995.

[13] Ducasse, S, Rieger, M., and Demeyer, S. A language
independent approach for detecting duplicated code. In Proc.

 9

Intl. Conference on Software Maintenance (ICSM ’99), pp.
109-118.

[14] Fowler, M. Analysis patterns: reusable object models.
Addison-Wesley, 1997

[15] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading Mass., Addison Wesley, 1995.

[16] Grahne, G., and Zhu, J., Efficiently Using Prefix-trees in
Mining Frequent Itemsets. In Proceeding of the First IEEE
ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI'03), Melbourne, FL, Nov 2003.

[17] Han, J., and Kamber, M. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, San Francisco
(2001).

[18] Jarzabek, S. and Shubiao, L. Eliminating Redundancies with
a “Composition with Adaptation” Meta-programming
Technique. In Proc. ESEC-FSE'03, European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ACM Press,
September 2003, Helsinki, pp. 237-246.

[19] Java Technology at http://java.sun.com/
[20] Johnson, J. H., “Identifying redundancy in source code using

fingerprints,” Proc. of the 1993 Conf. of the Centre for
Advanced Studies on Collaborative research: software
engineering (CASCON ’93), pp 171-183.

[21] Johnson, J. H. Substring Matching for Clone Detection and
Change Tracking. In Proc. Intl. Conference on Software
Maintenance (ICSM ‘94), pages 120–126.

[22] Kamiya, T., Kusumoto, S, and Inoue, K. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Software Engineering, vol.
28 no. 7, July 2002, pp. 654 – 670.

[23] Karkkainen, J., and Sanders, P. Simple linear work suffix
array construction. In Proc. 30th Internat. Colloq. Automata,
Languages & Programming (2003) 943-955.

[24] Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K.
Linear time longest common prefix computation in suffix
arrays and its applications. CPM 2001, LNCS 2089.

[25] Kennedy, A., and Syme, D. Design and implementation of
generics for the .NET Common Language Runtime. In Cindy
Norris and James B. Fenwick, Jr., editors, Proceedings of the
ACM SIGPLAN ’01 Conference on Programming Languages
Design and Implementation (PLDI-01), pages 1-12, New
York, June 2001. ACM Press. Appears as volume 35,
number 5 of SIGPLAN Notices.

[26] Kim, D.K., Sim, J.S., Park, H., and Park, K. Linear-time
construction of suffix arrays. In Proc. Fourteenth Annual
Symp. Combinatorial Pattern Matching (2003) 186-199.

[27] Ko, P., and Aluru, S. Space efficient linear time construction
of suffix arrays. In Proc. Fourteenth Annual Symp.
Combinatorial Pattern Matching (2003) 200-210.

[28] Kontogiannis, K.A., De Mori, R., Merlo, E., Galler, M., and
Bernstein, M. Pattern Matching for Clone and Concept
Detection. J. Automated Software Eng., vol. 3, pp. 770-108,
1996.

[29] Komondoor, R., and Horwitz, S. Using slicing to identify
duplication in source code. In Proc. 8th International
Symposium on Static Analysis, 2001, pages 40-56.

[30] Krinke, J. Identifying Similar Code with Program
Dependence Graphs. In proceedings of the Eight Working
Conference on Reverse Engineering, Stuttgart, Germany,
October 2001, pp. 301-309.

[31] Larsson, N.J., and Sadakane, K. Faster Suffix Sorting.
Technical Report LU–CS–TR:99–214, Lund University
(1999) 20 pp.

[32] Manber, U., and Myers, G. Suffix arrays: a new method for
on-line search. SIAM Journal of Computing, 22:935-48,
1993.

[33] Mayrand J., Leblanc C., and Merlo E. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proc. Intl. Conference on Software
Maintenance (ICSM ’96), pp. 244-254.

[34] Morzy, T., Wojciechowski, M., and Zakrzewicz, M. Pattern-
Oriented Hierarchical Clustering. Advances in Databases
and Information Systems, Proceedings Third East European
Conference, ADBIS’99, Maribor, Slovenia, 1999. Lecture
Notes in Computer Science 1691, Springer Verlag, 1999.

[35] Morzy, T., Wojciechowski, M., and Zakrzewicz, M. Web
Users Clustering. In Proc. of the 15th International
Symposium on Computer and Information Sciences, Istanbul,
Turkey, 2000, pages 374-382.

[36] Morzy, T., Wojciechowski, M., and Zakrzewicz, M. Scalable
Hierarchical Clustering Method for Sequences of Categorical
Values. In Knowledge Discovery and Data Mining - PAKDD
2001. In Proceedings 5th Pacific-Asia Conference, Hong
Kong, China. April 16-18, 2001. Lecture Notes in Artificial
Intelligence 2035, Springer Verlag, 2001.

[37] Parnas, D. Software aging. In Proc. 16th International
Conference on Software Engineering (ICSE 1994), pages 279
-287.

[38] Puglisi, S. J., Smyth, W. F., and Turpin, A. The performance
of linear time suffix sorting algorithms. In Proc. Data
Compression Conference 2005, to appear (2005).

[39] Ryan, A. P. J., Smyth, W. F., Turpin, A., and Xiaoyang Y.
New suffix array algorithms -- linear but not fast? In Proc.
15th Australasian Workshop on Combinatorial Algorithms,
Seok-Hee Hong (ed.) (2004) 148-156.

[40] Sadakane, K. A fast algorithm for making suffix arrays and
for Burrows-Wheeler transformation. In Proc. IEEE Data
Compression Conference (1998) 129–138.

[41] Somerville, I. Software Engineering, Addison-Wesley
Publishing Co., New York (1998).

[42] XVCL website at :
http://xvcl.comp.nus.edu.sg/overview_brochure.php

 10

http://www.maths.unisa.edu.au/~pmanyem/awoca/
http://www.maths.unisa.edu.au/~pmanyem/awoca/

	D
	Detecting Higher-level Similarity Patterns in Programs
	Hamid Abdul Basit
	Department of Computer Science�School of Computing�National
	hamid@nus.edu.sg
	Stan Jarzabek
	Department of Computer Science�School of Computing�National
	stan@comp.nus.edu.sg
	ABSTRACT
	Cloning in software systems is known to create problems duri
	Categories and Subject Descriptors
	D.2.7 [Software Engineering]: Distribution, Maintenance and
	General Terms
	Algorithms, Design.
	Keywords
	Permission to make digital or hard copies of all or part of
	ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
	Copyright 2005 ACM 1-59593-014-9/05/0009…$5.00.
	Software clones, similarity patterns, clone detection
	INTRODUCTION
	Software maintenance is widely accepted as the most costly p
	In the past decade, clone detection and resolution has got c
	The work presented in this paper is the first of its kind in
	The original contribution of our work lies in formulating he
	We apply token based approach for the detection of simple cl
	While clone analysis based on different metrics calculated f
	By detecting the frequently co-occurring clone classes in di
	The remainder of this paper is organized as follows. After d
	THE CLONING PROBLEM
	Two code structures of considerable size are clones of each
	Cloning is a common phenomenon found in almost all kinds of
	Most of the interesting clones, particularly those at the hi
	Reuse in object-oriented systems is made possible through di
	Programmers may also clone code to speed up development and
	While there are good reasons for creating certain clones, mo
	We distinguish two types of clones, namely:
	Simple clones: contiguous segments of similar code such as c
	Structural clones: patterns of inter-related classes emergin
	Different types of simple clones have been discussed in lite
	The clones discussed above are simple code level clones that
	Recurring problems of a similar structure in analysis and de
	Figure 1. A pair of structural clones
	Despite striking similarities, SES could not design a generi
	MOTIVATION FOR CLONE MINER
	Our requirements for clone detection differ from other tools
	Simple clones that are of our interest can differ in type pa
	The simplest form of a structural clone is a class. We are i
	The reason why we are interested in such vast range of simil
	Existing techniques for clone detection solely focus on simp
	Our goal is to overcome these limitations. We expect Clone M
	DETECTION OF SIMPLE CLONES
	In Clone Miner, we have implemented the token based detectio
	With negligible amount of pre-processing, clone detection ba
	On the other hand, parse tree or syntax tree comparison base
	After tokenizing the input source code files, a single token
	Tokenization

	As explained previously, our requirements for clone detectio
	An important parameter that the user needs to adjust for clo
	The sequence, in which the input files are read in, is not r
	Method boundaries are also detected by an online finite stat
	Finding Clones

	Here we reproduce the definitions of a few important clone r
	“A clone relation is an equivalence relation (i.e., reflexiv
	The detection of all clone classes corresponds directly with
	The basic output from the Clone Miner gives the number of to
	CLONE CLASS ID : 24
	LENGTH : 32 TOKENS
	MEMBERS : 2
	FILE ID
	START LINE
	START COLUMN
	END LINE
	END COLUMN
	10
	462
	19
	464
	5
	15
	894
	18
	896
	5
	Figure 2. Basic clone class information
	This means clone class 24 is 32 tokens long and has 2 member
	Initialization lists for tables and arrays in Java have to b
	MINING FOR STRUCTURAL CLONES
	Having detected individual clone classes, we move on to the
	By finding clones that occur together frequently in differen
	Finding Frequent Clone Patterns

	Once the simple clones have been detected, the data is trans
	FILE ID
	CLONE CLASSES PRESENT
	…
	…
	12
	9, 9, 9, 15, 28, 38, 40
	13
	12, 15, 40, 41, 43, 44, 44
	14
	9, 9, 9, 12, 15
	…
	…
	Figure 3. Clones per file
	The first stage of detecting structural clones is the detect
	ALGORITHM FOR FINDING FILES CONTAINING THE CLONE PATTERN
	For each clone pattern:
	Take the first clone class
	List all files that contain instances of this clone class
	For each clone class:
	If it does not contain all the clones of the pattern, prune
	Output the final list
	Figure 4. Algorithm for finding files having the clone patte
	Market basket analysis is based on “frequent itemset mining
	To normalize the data, Clone Miner transforms the data to ma
	FILE ID
	CLONE CLASSES PRESENT
	…
	…
	12
	900, 901, 902, 1500, 2800, 3800, 4000
	13
	1200, 1500, 4000, 4100, 4300, 4400, 4400
	14
	900, 901, 902, 1200, 1500
	…
	…
	Figure 5. Transformed clones per file
	Now the result from FIM will include 900, 901, 902, 1500, wh
	Another observation here is that mining all frequent itemset
	Because of the nature of the data mining problem, the algori
	FREQUENT CLONE PATTERN
	SUPPORT
	9,9,9,15
	2
	60 44 40 42 3 49 59 63
	4
	…
	…
	Figure 6. Sample frequent clone patterns with SUPPORT
	The output from this stage is in the format shown in Figure
	Although this information is very useful, one important piec
	Clustering Highly Cloned Files

	The recurring patterns of simple clones found in the previou
	Some of these clone patterns could be quite significant and
	To measure file coverage by a clone pattern, we calculate tw
	The first two rows in Figure 7 depict the clone pattern as e
	CLONE PATTERN
	9,9,9,15
	SUPPORT
	2
	FILE ID
	FTC
	FPC
	12
	1175
	29%
	14
	1175
	50%
	Figure 7. Frequent clone pattern with file coverage
	We now have to decide which clone patterns among those found
	We start by considering each clone pattern as a different cl
	Our clustering algorithm only involves iterative pruning of
	EXPERIMENTATION
	We performed a number of tests on different parts of J2SE 1.
	ALGORITHM FOR CLUSTER PRUNING
	REQUIRE : initial clusters
	INPUT : min FPC, min FTC
	Prune all the clusters with FPC of all files < min FPC and F
	Sort clusters based on the SUPPORT
	Secondary sort on max. FPC of all constituent files when SUP
	Starting from the smallest cluster, Prune clusters whose con
	Starting from the smallest cluster, prune clusters whose con
	Figure 8. Algorithm for cluster pruning
	A buffer contains data in a linear sequence for reading and
	Table 1. Features in the Buffer Library
	LEVEL IN CLASS HIERARCHY
	FEATURE DIMENSION
	FEATURES
	level 1
	buffer data element type
	byte, char, int, float double, long, short
	level 2
	memory allocation scheme
	direct, nondirect
	level 2
	byte ordering
	native, non-native, Big_endian, Little_endian
	level 3
	access mode
	writable, read-only
	With manual domain analysis, it was found that the 71 buffer
	[T]Buffer: contains 7 buffer classes of type T. T denotes o
	Heap[T]Buffer: contains 7 Heap classes of type T.
	Direct[T]Buffer[S|U]: contains 13 Direct classes. U denotes
	Heap[T]BufferR: contains 7 Heap read-only classes.
	Direct[T]BufferR[S|U]: contains 13 Direct read-only classes.
	ByteBufferAs[T]Buffer[B|L]: contains 12 classes providing vi
	ByteBufferAs[T]BufferR[B|L]: contains 12 read-only classes
	By performing the simple clones’ analysis of the Buffer Libr
	46 clone patterns were discovered by the FCIM algorithm when
	We also analyzed other parts of the J2SE 1.5 with Clone Mine
	OpenMBeanAttributeInfoSupport.java (FTC 1305 tokens, FPC 87.
	OpenMBeanParameterInfoSupport.java (FTC 1275 tokens, FPC 91.
	are detected as a cluster in package javax.management. openm
	Similarly, the 14 files with the same name of ObjectFactory.
	Further analysis may lead to the detection of even higher-le
	Table 2. Clone cluster analysis of J2SE 1.5
	MIN. FPC
	MIN. FTC
	NO. OF CLUSTERS
	NO. OF FILES
	50%
	35
	471
	2620
	50%
	500
	95
	298
	50%
	1000
	45
	185
	90%
	35
	188
	1012
	90%
	500
	42
	183
	90%
	1000
	23
	95
	The results shown in Table 2 indicate that significant gains
	TOOL IMPLEMENTATION
	The Clone Miner is implemented in C++ with the extensive usa
	The lexical analyzer for Clone Miner is built with ANTLR [3]
	We achieve the variable tokenization flexibility in the reve
	The user can also choose to suppress some token classes. For
	The detection of the short repetitive fragments, as discusse
	We have chosen the best algorithms available for the differe
	We performed several trial runs of Clone Miner on full J2SE
	RELATED WORK
	Different techniques have been deployed for the detection of
	Our clone detection technique is similar to the one employed
	CCFinder is easily configurable to read input in different p
	These optimizations include the alignment of token sequences
	In contrast to Clone Miner, CCFinder finds the clone pairs a
	Dup is another token based clone detection tool [4]. It find
	For finding maximal parameterized matching, Dup’s lexical an
	With the experience gained from the clone analysis of differ
	There is also strong connection between this work and the wo
	CONCLUSION AND FUTURE WORK
	In this paper, we described our strategy for detecting desig
	We designed a tool prototype, called Clone Miner, which impl
	To our best knowledge, the method described in this paper is
	Currently, we have applied our method to detect basic forms
	Just like any design analysis activity, and also as any data
	Another important aspect of extending the clone detection is
	From the discussion on cluster mining, it is evident that re
	ACKNOWLEDGEMENTS
	Many thanks are due to the following people for their invalu
	REFERENCES
	Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E. The enhanced
	Abouelhoda , M. I., Ohlebusch, E., and Kurtz, S. Optimal Exa
	ANTLR website at http:// www.antlr.org
	Basit, H. A., Rajapakse, D. C., and Jarzabek, S. Beyond Temp
	Baker, B. S. On finding duplication and near-duplication in
	Baker, B. S. Parameterized Duplication in Strings: Algorithm
	Baxter, I., Yahin, A., Moura, L., and Anna, M. S. Clone dete
	Biggerstaff, T.J. Design Recovery for Maintenance and Reuse.
	Buss, E., Mori, R. D., Gentleman, W., Henshaw, J., Johnson,
	Case Study: eliminating redundant codes in the Buffer librar
	Church, K. W. and Helfman, J. I. Dotplot: A program for expl
	Davey, N., Barson, P., Field, S., Frank, R., and Tansley, D
	Ducasse, S, Rieger, M., and Demeyer, S. A language independe
	Fowler, M. Analysis patterns: reusable object models. Addiso
	Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Pa
	Grahne, G., and Zhu, J., Efficiently Using Prefix-trees in M
	Han, J., and Kamber, M. Data Mining: Concepts and Techniques
	Jarzabek, S. and Shubiao, L. Eliminating Redundancies with a
	Java Technology at http://java.sun.com/
	Johnson, J. H., “Identifying redundancy in source code using
	Johnson, J. H. Substring Matching for Clone Detection and Ch
	Kamiya, T., Kusumoto, S, and Inoue, K. CCFinder: A multi-lin
	Karkkainen, J., and Sanders, P. Simple linear work suffix ar
	Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. L
	Kennedy, A., and Syme, D. Design and implementation of gener
	Kim, D.K., Sim, J.S., Park, H., and Park, K. Linear-time con
	Ko, P., and Aluru, S. Space efficient linear time constructi
	Kontogiannis, K.A., De Mori, R., Merlo, E., Galler, M., and
	Komondoor, R., and Horwitz, S. Using slicing to identify dup
	Krinke, J. Identifying Similar Code with Program Dependence
	Larsson, N.J., and Sadakane, K. Faster Suffix Sorting. Techn
	Manber, U., and Myers, G. Suffix arrays: a new method for on
	Mayrand J., Leblanc C., and Merlo E. Experiment on the auto
	Morzy, T., Wojciechowski, M., and Zakrzewicz, M. Pattern-Ori
	Morzy, T., Wojciechowski, M., and Zakrzewicz, M. Web Users C
	Morzy, T., Wojciechowski, M., and Zakrzewicz, M. Scalable Hi
	Parnas, D. Software aging. In Proc. 16th International Confe
	Puglisi, S. J., Smyth, W. F., and Turpin, A. The performance
	Ryan, A. P. J., Smyth, W. F., Turpin, A., and Xiaoyang Y. Ne
	Sadakane, K. A fast algorithm for making suffix arrays and f
	Somerville, I. Software Engineering, Addison-Wesley Publishi
	XVCL website at : http://xvcl.comp.nus.edu.sg/overview_broch

