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ABSTRACT 
Cloning in software systems is known to create problems during 
software maintenance. Several techniques have been proposed to 
detect the same or similar code fragments in software, so-called 
simple clones. While the knowledge of simple clones is useful, 
detecting design-level similarities in software could ease 
maintenance even further, and also help us identify reuse 
opportunities. We observed that recurring patterns of simple 
clones – so-called structural clones - often indicate the presence 
of interesting design-level similarities. An example would be 
patterns of collaborating classes or components. Finding structural 
clones that signify potentially useful design information requires 
efficient techniques to analyze the bulk of simple clone data and 
making non-trivial inferences based on the abstracted information. 
In this paper, we describe a practical solution to the problem of 
detecting some basic, but useful, types of design-level similarities 
such as groups of highly similar classes or files. First, we detect 
simple clones by applying conventional token-based techniques. 
Then we find the patterns of co-occurring clones in different files 
using the Frequent Itemset Mining (FIM) technique. Finally, we 
perform file clustering to detect those clusters of highly similar 
files that are likely to contribute to a design-level similarity 
pattern. The novelty of our approach is application of data mining 
techniques to detect design level similarities. Experiments 
confirmed that our method finds many useful structural clones and 
scales up to big programs. The paper describes our method for 
structural clone detection, a prototype tool called Clone Miner that 
implements the method and experimental results.  

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance and 
Enhancement – Restructuring, reverse engineering, and 
reengineering; H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval – Clustering. 

General Terms 
Algorithms, Design. 

Keywords 
Software clones, similarity patterns, clone detection 

1. INTRODUCTION 
Software maintenance is widely accepted as the most costly phase 
of a software lifecycle, with figures as high as 80% of the total 
development cost being reported for it [41]. Cloning is one of the 
contributors towards this cost.  

In the past decade, clone detection and resolution has got 
considerable attention from the software engineering research 
community and many clone detection tools and techniques have 
been proposed [5][7][11][12][13][21][22][28][30][33]. So far, 
clone detection has been focused on detecting similar code 
fragments – so-called simple clones, with some gains in reducing 
update anomalies and the software size.  These gains, however, 
can be improved by elevating the level of clone analysis. As 
shown by our previous studies [10][4], clone analysis aided by 
domain analysis can reveal design level similarities (so-called 
structural clones), whose unification not only brings more size 
reduction, but also helps in understanding the design of the system 
for better maintenance and future enhancement.  

The work presented in this paper is the first of its kind in 
analyzing patterns of cloned fragments to infer design-level 
similarities in a system. We started by formulating heuristics to 
characterize patterns of simple clones that could indicate design-
level similarities. The data resulting from the detection of simple 
clones in big software systems can be large and complex, making 
manual application of heuristics hardly possible. We applied the 
data mining approach to extract the most useful information 
leading to the detection of closely interacting classes and modules, 
as candidates for structural clones. Our experimentation has so far 
focused on detecting some basic, but useful, types of design-level 
similarities such as groups of highly similar classes or files. The 
principle of our method, however, scales to finding many other 
types of similarity patterns. 
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The original contribution of our work lies in formulating 
heuristics for inferring design-level similarities based on patterns 
of simple clones, and applying data mining approach to automate 
making proper inferences. We also demonstrate that our method 
finds useful design-level similarities and scales up to large 
programs. Finally, our method also allows us to find complex 
gapped clones (e.g., code fragments that differ in arbitrary 



number, location and size of added/deleted code fragments), 
which extends capabilities of existing token-based clone detection 
techniques and tools that can find exact and parameterized clones 
only. 

We apply token based approach for the detection of simple clones. 
It provides a suitable level of flexibility for the task by limiting 
the language dependence, being resilient to the differences in code 
layout, while providing a good mechanism for detecting 
parameterized simple clones. Having transformed a source 
program into a string of tokens, we compute the maximal repeats 
in the string with a suffix array based algorithm [1]. These 
maximal repeats, with some heuristic based pruning, form clone 
classes. Although our detection of simple clones is much similar 
to the previously published approach [22], the novel contribution 
is in the introduction of a simple and flexible tokenization 
technique, and the selection of efficient data structures and 
algorithms for token string manipulation.  

While clone analysis based on different metrics calculated for the 
clones has been applied previously [22], the idea of clone pattern 
mining is our original contribution. We can find clone patterns in 
different units of code, either methods or classes or components or 
modules, gaining useful insights into the cloning situation at 
different levels of abstraction. We have initially tried this 
approach at file level, by finding the frequently occurring clone 
patterns in different files and analyzing those patterns, with 
promising results.  

By detecting the frequently co-occurring clone classes in different 
files, we can isolate the groups of files that have strong similarity 
with each other. This is achieved by a clustering algorithm that we 
have devised for this particular problem. These clusters of highly 
similar files form basic structural clones. 

The remainder of this paper is organized as follows. After 
describing the cloning problem in Section 2, we give the 
motivation for Clone Miner in Section 3. Sections 4 and 5 discuss 
our method for detecting simple and structural clones, 
respectively. Section 6 describes the experimentation with the 
prototype tool, while Section 7 gives the implementation details. 
Related work and conclusions end the paper.  

2. THE CLONING PROBLEM 
Two code structures of considerable size are clones of each other 
if there is significant similarity between them. The actual size and 
similarity (which can be measured, for example, in terms of 
percentage of repeated code) varies depending on the context, and 
is left to human judgment. Clones may or may not represent 
program structures that perform well-defined functions. The 
above notions involve human judgment and are, therefore, 
subjective in nature. Unfortunately, similarity is a multi-faceted 
phenomenon that escapes precise definition.  

Cloning is a common phenomenon found in almost all kinds of 
software systems. Recently, this phenomenon has caught 
considerable attention from the research community. Cloning is 
believed to have a negative impact on the maintenance of large 
software systems. 

Most of the interesting clones, particularly those at the higher 
level (so called structural clones), are similar but not identical. 
Changes among clones result from differences in intended 
behavior, and from dependencies on the specific program context 

in which clones are embedded (such as different names of 
referenced variables, methods called, or platform dependencies). 

Reuse in object-oriented systems is made possible through 
different mechanisms such as inheritance, shared libraries, object 
composition, and so on. Still, programmers often need to reuse 
components which have not been designed for reuse. This may 
happen during the initial systems development and also when 
these software systems go through the expansion phase and new 
requirements have to be satisfied. In these situations, the 
programmers usually follow the low cost copy-paste technique, 
instead of costly redesigning-the-system approach, hence causing 
clones. This type of code cloning is the most basic and widely 
used approach towards software reuse. Several studies suggest 
that as much as 20-30% of large software systems consist of 
cloned code [5][33]. 

Programmers may also clone code to speed up development and 
maintenance, especially when the new requirement is not fully 
understood and a similar piece of code is present in the system. 
Cloning may also be linked to LOC-based performance appraisals 
and the fact that cloning is considered safe as having little 
unplanned effect on the original code, as the original code is not 
modified and simply copied at another place. Sometimes, cloning 
is done to increase the robustness of life-critical systems, for 
better performance, or to minimize dependencies among 
developers in large projects, or to port the application to another 
hardware platform. Poor design and ad hoc maintenance also 
induce clones. Clones are also created by code generation tools, or 
by following a coding style. Finally, some clones may just appear 
accidentally. 

While there are good reasons for creating certain clones, most of 
them, independently of the reasons why they occur, are counter-
productive for future maintenance, as they increase the risk of 
update anomalies (inconsistencies in updating clone instances). 
When a cloned fragment is to be changed, a programmer must 
find and update all the instances of it consistently. The situation is 
further complicated if an affected fragment must be changed in 
slightly different ways, depending on the context. With excessive 
cloning, evolution and further development (Maintenance) 
become prohibitively expensive. Clones may also form implicit 
links between components that share some functionality. All this 
contributes towards “software aging” [36]. 

We distinguish two types of clones, namely:  

Simple clones: contiguous segments of similar code such as class 
methods, or fragments of method implementation, and 

Structural clones: patterns of inter-related classes emerging from 
design and analysis spaces; patterns of components at the 
architecture level; design solutions repeatedly applied by 
programmers to solve similar problems (so-called “mental 
templates” [7]). 

Different types of simple clones have been discussed in literature. 
An exact clone is a fragment of code that is identical to another 
one. Parameterized clones are defined as “code sections that 
match except for a one-to-one correspondence between candidates 
for parameters such as variables, constants, macro names, and 
structure member names” [6]. Some other authors do not consider 
strict one-to-one relationship between the parameters of two 
cloned portions and their treatment of parameterized clones is 
more general [22]. A gapped clone is a code fragment that is an 
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exact or a parameterized clone of another, but has some extra or 
missing code that cannot be parameterized.  

The clones discussed above are simple code level clones that 
consist of a single chunk of code cloned at different places, with 
the exception of gapped clones, which can also be a manifestation 
of the structural clones, as will be explained later.  

Recurring problems of a similar structure in analysis and design 
spaces may lead to structural clones. Analysis patterns [14] and 
design patterns [15] exemplify these situations. Structural clones 
often represent repeated patterns of simple clones. For example, 
Figure 1 shows a pair of structural clones our industry partner 
(SES Systems Pte Ltd) found in a real C# system. These clones 
arose from the following situation: The system was based on over 
20 domain entities such as User or Task. The design and 
implementation of operations (such as Create) for various entities 
were characterized by a similar pattern of collaborating classes 
across GUI, service and database layers. Each box in Figure 1 
represents a number of classes, with much similarity across 
classes implementing similar concepts in the same types of 
operations for different entities.  

 
Figure 1. A pair of structural clones 

Despite striking similarities, SES could not design a generic 
solution for groups of operations such as CreateUser and 
CreateTask. To implement generic operations for domain entities, 
SES would have to first unify groups of classes in GUI, Service, 
Entity and DB layers such as Create[entity-type]Form, 
Update[entity-type]Form, etc. However, the nature of variations in 
business logic across operations for different entity types was 
such that neither inheritance nor type parameters (such as in 
generics proposed for C# [25]) could be used to implement 
operations in generic way. Therefore, in the C# subsystem, SES 
had to repeat the same design/implementation steps for all the 
domain entities and their respective operations.  

3. MOTIVATION FOR CLONE MINER 
Our requirements for clone detection differ from other tools and 
techniques. We wish to detect both simple and structural clones 
(such as the one shown in Figure 1), allowing a vast range of 
differences between them. 

Simple clones that are of our interest can differ in type 
parameters, keywords, variable/constant names, operators – 
actually any details of algorithms, declarations or function 
signatures. In particular, two similar fragments might be edited by 
a programmer in arbitrary ways, e.g., by modifying some section, 
or inserting/deleting certain lines of code.  

The simplest form of a structural clone is a class. We are 
interested in classes differing in details of method 
implementation, method signatures, or the order in which methods 
are listed in the class body. If a class contains extra methods as 
compared to other similar classes, we could still consider such 
classes as structural clones. Beyond similar classes, we are also 
interested in patterns of classes/components that display 
similarities. 

The reason why we are interested in such vast range of similarities 
is that our goal for clone detection is to unify clone classes with 
generic design solutions. We build generic design solutions with a 
meta-level method, called XVCL [42], which is capable of 
unifying both simple and structural clones, even with a wide range 
of differences among them [4][18]. With XVCL meta-structures, 
we would like to unify any similarity patterns whose unification is 
deemed beneficial from the engineering point of view (e.g., leads 
to simpler programs that are easier to maintain or reuse due to 
non-redundancy).  

Existing techniques for clone detection solely focus on simple 
clones. Furthermore, these techniques can only find exact clones 
or clones differing in parametric ways.  

Our goal is to overcome these limitations. We expect Clone Miner 
to detect candidates for simple and structural clones that meet 
certain similarity threshold (as explained later in the paper). Such 
clone candidates would be examined by an analyst who would 
then decide which ones are suitable for unification with generic 
design solutions. Ideally, information about accepted clones could 
be fed to the Clone Miner for further processing, in order to find 
higher-level clones based on lower-level ones. Therefore, the 
clone detection process that we envision would lead from simple 
clones to structural clones, possibly at a number of abstraction 
levels (up to the level of software architecture). 

4. DETECTION OF SIMPLE CLONES 
In Clone Miner, we have implemented the token based detection 
of simple clones. Although the token similarity computations are 
expensive, yet token based approach gives certain advantages 
over other techniques.  

With negligible amount of pre-processing, clone detection based 
on raw text is language independent and free of pre-processing 
overhead, but is very sensitive to the small differences that may be 
present between two very similar code fragments. It can only find 
the exact clones, and cannot be used for parameterized clone 
detection.  

On the other hand, parse tree or syntax tree comparison based 
clone detection becomes too language dependent, and strongly 
tied to the specific flavor of the given language. Similarly, metrics 
based techniques are also language dependent but their major 
restriction is on the granularity of the clones i.e., only functional 
or class level clones can be detected. Hence we have chosen the 
token-based approach, that lies somewhere in the middle of the 
pre-processing spectrum. 

After tokenizing the input source code files, a single token string 
is generated. Efficient suffix array based repeat finding algorithm, 
with some language-specific, heuristics based optimizations, is 
implemented to detect clones.  
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4.1 Tokenization 
As explained previously, our requirements for clone detection 
differ from the other tools and techniques. Hence, we propose a 
customizable tokenization strategy. In this scheme, a separate 
integer ID is assigned to each token class found in the source 
code. The classification of tokens is totally customizable. For 
example, if the user does not want to differentiate between the 
types {int, short, long, float, double}, we can have the same ID to 
represent every member of the above set of types.  

An important parameter that the user needs to adjust for clone 
detection is the minimum length of the clones. If this threshold 
value is too large, few clones are reported. On the other hand, if 
the threshold value is too small, a large number of clones are 
reported, many of them being so small that no meaningful clone 
unification can be applied. In CCFinder [22], the default value is 
set to 30 tokens, but in Clone Miner, it is advised to set a smaller 
threshold value to facilitate the detection of structural clones. 
Several small clones may form a bigger gapped clone, having 
multiple gaps of arbitrary sizes, and it will be reported as a clone 
pattern in the next stage of clone pattern mining. 

The sequence, in which the input files are read in, is not relevant 
to clone detection. Clones crossing these file boundaries are not 
meaningful in terms of clone unification as this ordering may be 
random and with another ordering of the input files, such clones 
may not be detected. To curb this straddling of files boundaries by 
clones, the boundaries for files are marked by unique sentinel 
tokens that are never repeated in the token string. This ensures 
that the clones never cross a file boundary. These sentinel tokens 
increase the alphabet size, but the string algorithms are so selected 
that this effect is only marginal. Detection of file boundaries is 
straightforward as each file is read in separately.  

Method boundaries are also detected by an online finite state 
machine (FSM), but they are not marked, since we are not 
restricted by method boundaries for clone unification using 
XVCL. Several small methods may form a bigger clone, which 
may not be detected if the method boundaries are marked by 
unique sentinel tokens. We plan to use this functionality in future 
for method based clone pattern analysis. 

4.2 Finding Clones 
Here we reproduce the definitions of a few important clone related 
terms given in [22]: 

“A clone relation is an equivalence relation (i.e., reflexive, 
transitive, and symmetric relation) on code portions. A clone 
relation holds between two code portions if (and only if) they are 
the same sequences. For a given clone relation, a pair of code 
portions is called clone pair if the clone relation holds between 
the portions. An equivalence class of clone relation is called clone 
class. That is, a clone class is a maximal set of code portions in 
which a clone relation holds between any pair of code portions.” 
(We have used the terms clone and clone classes interchangeably 
whenever it did not lead to confusion.) 

The detection of all clone classes corresponds directly with the 
computation of all non-extendible ‘repeats’ in a string, when the 
code is represented by a string of tokens. The sentinels for method 
and file boundaries make sure that no ‘repeat’ crosses these 
boundaries. The algorithm for finding these non-extendible 
‘repeats’ returns the output in terms of the indexes in the token 

string for beginning and ending of the repeat. This information 
has to be translated into file name, line number and column 
number to be useful for the user and to be projected on the source 
code browser. For this purpose, information for line number and 
column number for each token is stored separately. 

The basic output from the Clone Miner gives the number of total 
clone classes found and the details for each clone class. This 
includes its length in tokens, number of clone instances (members 
of this clone class), file ID for each clone instance, its beginning 
line number and column number, and its ending line number and 
column number. A sample is shown in Figure 2. 

CLONE CLASS ID : 24 

LENGTH : 32 TOKENS 

MEMBERS : 2 

FILE 
ID 

START 
LINE 

START 
COLUMN 

END 
LINE 

END 
COLUMN 

10 462 19 464 5 
15 894 18 896 5 

Figure 2. Basic clone class information 
This means clone class 24 is 32 tokens long and has 2 members. 
The first member is present in file 10 starting at line 462 and 
column 19 and ending at line 464 at column 5. The second row is 
interpreted in a similar way. The information about the column 
numbers is very useful for the Clone Miner GUI as it gives the 
exact location of the beginning and ending of the clone instance in 
the file.  

Initialization lists for tables and arrays in Java have to be ignored 
completely as they serve no purpose in clone unification. They are 
simply lists of different values that are mistakenly detected as 
clones because they represent the same token class (e.g., integer 
values). For detecting these initialization lists, we just need to 
detect beginning token sequence “={“ and its corresponding 
ending braces “}”, which can be easily done by a small finite state 
machine working online, while the input source files are being 
read.  

5. MINING FOR STRUCTURAL CLONES 
Having detected individual clone classes, we move on to the 
detection of higher level similarity patterns based on the data 
gathered in the previous stage. The first step is to represent this 
data in a suitable format to facilitate comparison of different 
bigger units of code like files or classes. Since, in Java, each file 
contains one class (considering the nested and inner classes as part 
of the outer class), currently, we only perform this comparison 
based on files.  

By finding clones that occur together frequently in different files, 
we get more insight into the cloning scenario of the system under 
analysis. Then we extract significant clone patterns for further 
detailed manual analysis. These steps are discussed next. 

5.1 Finding Frequent Clone Patterns 
Once the simple clones have been detected, the data is 
transformed into a format that lists down all the clone classes 
represented in each file. This information is presented to the user. 
But more importantly, this information is used as the input for the 
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data mining phase of detecting structural clones. A sample extract 
of this format is shown in Figure 3. The first row says that the file 
with file ID 12 contains three clone instances belonging to clone 
class 9 and one instance from each of the clone classes 15, 28, 38, 
and 40. The interpretation is likewise for the other rows. 

FILE ID CLONE CLASSES PRESENT 

… … 
12 9, 9, 9, 15, 28, 38, 40 
13 12, 15, 40, 41, 43, 44, 44 
14 9, 9, 9, 12, 15 
… … 

Figure 3. Clones per file 
The first stage of detecting structural clones is the detection of 
recurring patterns of simple clones in different files. Here, we 
apply the “market basket analysis” technique from the Data 
Mining domain. The idea behind this technique is to find the items 
that are usually purchased together by different customers from a 
departmental store. The input database consists of a list of 
transactions, each one containing items bought by a customer in 
that transaction. The output consists of identifying those groups of 
items that are most likely to be bought together. The analogy here 
is that the files represent the transactions and the clone classes 
represented in that file are the items of that transaction. Our 
objective is to find all those groups of clone classes whose 
instances occur together in different files. These patterns of clone 
classes will act as the unique representation for a group of files, 
and depending upon its significance in terms of files’ coverage, 
will lead to identifying groups of highly similar files. This will be 
our basic structural clone.  

ALGORITHM FOR FINDING FILES CONTAINING 
THE CLONE PATTERN 

 
For each clone pattern: 
1. Take the first clone class 
2. List all files that contain 

instances of this clone class 
3. For each clone class: 

a. If it does not contain all 
the clones of the pattern, 
prune it from the list 

4. Output the final list 
 

Figure 4. Algorithm for finding files having the clone pattern 
Market basket analysis is based on “frequent itemset mining 
(FIM)”. The difference between our data and the expected data 
format for frequent itemset mining is that in FIM, the items in a 
transaction are considered unique, whereas in our data, one file 
may contain multiple instances of a clone class. There can be the 
possibility to normalize the data, by removing the duplicates, but 
by doing so, we miss out important information, as multiple 
occurrences of the instances of the same clone class in different 
files is a valid pattern of clones. For example, 9, 9, 9, 15 is a valid 
clone pattern represented in File 12 and File14 in Figure 3. 

To normalize the data, Clone Miner transforms the data to make 
all the clones present in a file unique. For this, our technique is 
based on the following heuristic assumption; in a given file, not 
more than N instances of a clone class can be present. We 
multiply each clone class by N and add the index number of the 

clone in this file to the result. For example, in the case shown in 
Figure 3, the transformed data will be like Figure 5 with N = 100. 

FILE ID CLONE CLASSES PRESENT 

… … 
12 900, 901, 902, 1500, 2800, 3800, 4000 

13 1200, 1500, 4000, 4100, 4300, 4400, 
4400 

14 900, 901, 902, 1200, 1500 
… … 

Figure 5. Transformed clones per file 
Now the result from FIM will include 900, 901, 902, 1500, which, 
after reverse transformation of dividing by 100 and rounding 
down the result, becomes 9,9,9,15, i.e., reflecting the exact 
scenario.  

Another observation here is that mining all frequent itemsets 
returns many frequent itemsets that are subsets of bigger frequent 
itemsets. So the correct solution in our case is to perform 
“Frequent Closed Itemset Mining” (FCIM), where only those 
itemsets are reported which are not subsets of any bigger frequent 
itemset.  

Because of the nature of the data mining problem, the algorithm is 
tuned to adjust the minimum support level for FCIM. For our 
problem, we have hard coded this to be 2, so that it will report a 
clone pattern, even if it is present only in 2 files as it could be 
significant for maintenance based on its size.  

FREQUENT CLONE PATTERN SUPPORT 

9,9,9,15 2 
60 44 40 42 3 49 59 63 4 

… … 
Figure 6. Sample frequent clone patterns with SUPPORT 

The output from this stage is in the format shown in Figure 6. 
Each row represents one clone pattern along with its support 
count, indicating the number of files containing this clone pattern. 
In Figure 6, the first clone pattern is present in 2 files, whereas the 
second one is present in 4 files.  

Although this information is very useful, one important piece of 
information missing here is the identification of those files that 
contain these patterns. With some extra processing, Clone Miner 
finds this information as well. The algorithm is presented in 
Figure 4. 

5.2 Clustering Highly Cloned Files 
The recurring patterns of simple clones found in the previous 
stage may or may not be significant. The significance of the clone 
patterns is subject to the user’s judgment. A lot of clone patterns 
found by the above method may not be significant in terms of file 
coverage, and there could also be multiple clone patterns 
represented in a single file. However, all of these clone patterns 
are still useful, as each one represents an unrestricted gapped 
clone, where any number of gaps are allowed with arbitrary size 
and ordering. 

Some of these clone patterns could be quite significant and cover 
a considerable part of some files. Such clusters of files that are 
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covered by a significant clone pattern form the basic structural 
clones, and may also indicate higher design level similarities that 
can be extracted with proper domain analysis.  

To measure file coverage by a clone pattern, we calculate two 
metrics, namely the File Percentage Coverage (FPC), which 
indicates the percentage of a file covered by a clone pattern, and 
the File Token Coverage (FTC), which tells the number of tokens 
in a file covered by the clone patter, for each file containing the 
clone pattern. The complication here is that some clones may 
overlap in a file, so we cannot simply add up the size of all clones 
in a pattern to find the file coverage. The algorithm currently 
implemented in Clone Miner makes use of a bit vector equal to 
the size of the file (in tokens), with all bits initially set to false. 
For each clone of the clone pattern, the corresponding bits in the 
token file are set and the final count of the set bits gives the file 
coverage. This is an expensive processing in terms of time 
because each clone pattern may have several clones and each 
clone pattern may be represented in several files. It also involves a 
lot of redundancy as the same clone may be a part of several clone 
patterns and the same file may be processed again and again. We 
plan to do some optimizations to this algorithm in future. The 
output is in the format given in Figure 7.  

The first two rows in Figure 7 depict the clone pattern as 
explained above. The last two lines give the file ID with the FPC 
and FTC values for each file. 

CLONE PATTERN 9,9,9,15 

SUPPORT 2 

FILE ID FTC FPC 
12 1175 29% 
14 1175 50% 

Figure 7. Frequent clone pattern with file coverage 
We now have to decide which clone patterns among those found 
previously signify clusters of highly similar files. The first 
consideration is again to represent the data in a suitable format. 
Instead of representing files, we start by representing clusters. We 
do not expect that all files may be part of some high level 
structural clone and should be detected as part of a cluster. Hence 
a lot of files may have to be ignored as outliers when clustering. 
This is different from other approaches, where it is assumed that a 
majority of data points belong to clusters and a few would be 
detected as outliers. This approach is also called cluster mining as 
compared to clustering.  

We start by considering each clone pattern as a different cluster, 
where the clone pattern acts as the description of the cluster. The 
FPC and FTC indicate the significance of each cluster. The user  
specifies a minimum FPC and FTC value to indicate the 
significance of a cluster. The cluster will be considered significant 
even if one file has the FPC or FTC value greater than threshold 
values. The expected output is to find all the significant clusters 
that cover maximum number of files and no file is preferably 
repeated in two clusters.  

Our clustering algorithm only involves iterative pruning of 
clusters as shown in Figure 8. 

6. EXPERIMENTATION 
We performed a number of tests on different parts of J2SE 1.5 
[19] source code with interesting and useful results. One detailed 
analysis of the Java Buffer Library (java.nio.* package of J2SE 
1.5) with Clone Miner is presented here. In previous case study 
[10], we have already analyzed the structure of this library in 
detail and have found considerable code and design level cloning 
in it. Therefore, by choosing java.nio.* package, we could easily 
validate if the results of automatic clone detection by Clone Miner 
were relevant, that is, if they revealed significant and useful 
similarities.    

ALGORITHM FOR CLUSTER PRUNING 
 
REQUIRE : initial clusters 
INPUT   : min FPC, min FTC  
 
1. Prune all the clusters with FPC of 

all files < min FPC and FTC of all 
files < min FTC 

2. Sort clusters based on the SUPPORT 
a. Secondary sort on max. FPC of 

all constituent files when 
SUPPORT is same 

3. Starting from the smallest cluster, 
Prune clusters whose constituent 
files are all present in another 
cluster 

4. Starting from the smallest cluster, 
prune clusters whose constituent 
files are all present in any other 
cluster.  

Figure 8. Algorithm for cluster pruning 

A buffer contains data in a linear sequence for reading and 
writing. Buffer classes differ in features such as a buffer element 
type, memory allocation scheme, byte ordering, and access mode, 
as shown in Table 1. Each legal combination of features yields a 
unique buffer class. That is why, even though all the buffer 
classes play essentially the same role, there are 74 classes in the 
Java Buffer library.  

Table 1. Features in the Buffer Library 

LEVEL IN 
CLASS 

HIERARCHY 

FEATURE 
DIMENSION 

FEATURES 

level 1 buffer data 
element type 

byte, char, int, 
float double, long, 

short 
level 2 memory 

allocation 
scheme 

direct, nondirect 

level 2 byte ordering native, non-native, 
Big_endian, 
Little_endian 

level 3 access mode writable, read-only 

With manual domain analysis, it was found that the 71 buffer 
classes (all classes except Buffer, MappedByteBuffer, 
StringCharBuffer) can be clustered into 7 groups of similar 
classes. Members from each of these groups combine to form a 
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repeating structure of collaborating classes (a structural clone). 
The description of these groups is as follows [10]: 

1. [T]Buffer: contains 7 buffer classes of type T.  T denotes one 
of the buffer element types, namely, Byte, Char, Int, Double, 
Float, Long, Short.  

2. Heap[T]Buffer: contains 7 Heap classes of type T.  

3. Direct[T]Buffer[S|U]: contains 13 Direct classes. U denotes 
native and S - non-native byte ordering.  

4. Heap[T]BufferR: contains 7 Heap read-only classes.  

5. Direct[T]BufferR[S|U]: contains 13 Direct read-only classes.  

6. ByteBufferAs[T]Buffer[B|L]: contains 12 classes providing 
views T of a Byte buffer with different byte orderings. T here 
denotes buffer element type except Byte. B denotes 
Big_endian and L - Little_endian byte ordering.  

7. ByteBufferAs[T]BufferR[B|L]: contains 12 read-only 
classes  providing views T of a Byte buffer with different 
byte orderings (B or L). T here denotes buffer element type 
except Byte. B denotes Big_endian and L - Little_endian 
byte ordering.  

By performing the simple clones’ analysis of the Buffer Library 
with Clone Miner, a total of 102 clone classes were detected, with 
the minimum clone size of 20 tokens. As expected, the clones 
were distributed in all the files.  

46 clone patterns were discovered by the FCIM algorithm when it 
was run on the data file containing the clones listed in terms of 
files. These patterns formed the initial 46 clusters. In the first 
iteration of the cluster pruning phase, 18 insignificant clusters 
were pruned leaving 28 significant clusters, each having at least 
one file that is covered more than 50% by the clone pattern 
describing that cluster. In the second iteration, 13 of the 
significant clusters were also pruned because all their constituent 
files were totally represented in some other cluster. After the third 
and final iteration, another 8 clusters were pruned because the 
files representing them were present in other clusters as well, 
leaving behind only 7 clusters. These 7 clusters match exactly 
with the 7 groups of similar classes that were found manually as 
mentioned before. This means that by performing only minimal 
domain analysis based on the output from Clone Miner, the 
generic representation of the whole Buffer Library can be 
formulated. 

We also analyzed other parts of the J2SE 1.5 with Clone Miner 
with some very useful results. Table 2 presents a summary of the 
significant basic structural clones that were found in J2SE 1.5 
with different values of FPC and FTC. A manual inspection of the 
results indicates that the file clusters found by Clone Miner 
actually indicate significant cloning between the files clustered 
together. Most of the times, the design similarity was evident from 
the file names. For example, the files 

! OpenMBeanAttributeInfoSupport.java (FTC 1305 tokens, 
FPC 87.6427%)  and  

! OpenMBeanParameterInfoSupport.java (FTC 1275 tokens, 
FPC 91.5948%) 

are detected as a cluster in package javax.management. 
openmbean.*. The cloning in the files could be easily verified 

with manual inspection. Although other tools with metrics value 
comparison for different files may also detect such groups of files, 
the advantage of Clone Miner is that it builds this information 
incrementally, and at each step all the previous-level information 
is also available that gives the details of cloning. While comparing 
the above two files, for example, the user also knows which 
chunks of code is cloned between the two files and what is the 
location of those clone instances in each file. A GUI for Clone 
Miner, that is an ongoing project, will greatly enhance the 
usefulness of this feature. 

Similarly, the 14 files with the same name of ObjectFactory.java, 
that are duplicated intentionally for each JAXP sub package in 
com.sun.org.apache.* package are also detected by Clone Miner 
as a cluster of 14 files having an FPC of almost 98% and an FTC 
of 1319 tokens each. The fact that the files are in fact exact 
duplicates of each other is revealed upon reading the comments 
inside the files. 

Further analysis may lead to the detection of even higher-level 
similarities between the different clusters detected by the tool and 
is part of our future work.  

Table 2. Clone cluster analysis of J2SE 1.5 

MIN. FPC MIN. FTC NO. OF 
CLUSTERS 

NO. OF 
FILES 

50% 35 471 2620 
50% 500 95 298 
50% 1000 45 185 
90% 35 188 1012 
90% 500 42 183 
90% 1000 23 95 

The results shown in Table 2 indicate that significant gains can be 
achieved by unifying groups of highly similar classes at the meta -
level, both in terms of code reduction as well as in terms of design 
understanding. Properly representing groups of similar classes, 
with clearly identifying the similarities and differences, helps 
greatly in better understanding the design and facilitate further 
changes, easing the maintenance. 

7. TOOL IMPLEMENTATION 
 The Clone Miner is implemented in C++ with the extensive usage 
of container classes from STL for efficient manipulation of data.  

The lexical analyzer for Clone Miner is built with ANTLR [3]. 
Only one pass over the source code is required to tokenize the 
input source code. 

We achieve the variable tokenization flexibility in the reverse 
way. Our lexer generates a very refined tokenization with 115 
token classes for Java source code, and then allows the user to 
specify the equivalence of the different input tokens to facilitate 
detection of parameterized clones. Since the clone detection 
algorithm only detects exact string repeats, the parameterized 
clones are converted to exact clones by tokenization and token 
equalization. Primitive Java types like int, float, long, double can 
be easily parameterized and hence should be treated as same. 
Similarly other possibilities are operators like +,-, /,* etc. and 
keywords like ‘public’ or ‘private’. 
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The user can also choose to suppress some token classes. For 
example, if keywords like ‘const’ are to be ignored, their 
respective token number will not appear in the token string. 

The detection of the short repetitive fragments, as discussed later 
in the related work section, is done before running the repeat 
finding algorithm. It involves reading the suffix array and 
computing the difference between each pair of consecutive entries 
of the suffix array. If this distance is being duplicated for some 
pairs, we mark it as a repetitive section. This section continues 
until the distance between the consecutive pairs of suffixes of the 
string remains the same. A bit-vector is used to store this 
information. For every token that is a part of a repetitive section, 
the bits are set, while for the rest of the code, the bits are unset.  
When the clones are being detected, the sections of tokens 
corresponding to set bits in the bit-vector are ignored. 

We have chosen the best algorithms available for the different 
tasks in the system. The system is designed in such a way that it 
works with the standard algorithms. Different implementations of 
these standard algorithms can be simply plugged into the system 
with minimum configuration. We have incorporated the string 
matching based on suffix arrays instead of suffix trees considering 
their space efficiency [32]. Although there are 3 new algorithms 
published in 2003 for linear time construction of suffix array 
[23][26][26], empirical studies have shown that they are not as 
fast in practice as the previously known O(n log n) algorithm [31] 
which we have chosen for our system. These results are presented 
in [38][39]. For efficiently finding the repeating parts of the 
string, the suffix array has to be enhanced by a supporting array 
called the Longest Common Prefix (LCP) array. For LCP array 
creation, we are using the algorithm “GetHeight” presented in 
[24].The algorithm “NERF” (Non-Extendible Repeats Finder) 
used for non-extendible repeats finding is similar to the maximal 
pairs finding algorithm presented in [1]. For FCIM, currently we 
are using the algorithm from [16]. 

We performed several trial runs of Clone Miner on full J2SE 1.5 
source code consisting of 6558 source files and around half a 
million LOC, on a Pentium IV machine with 3.0 GHz processor 
and 1 GB RAM. Each time it took less than 3 minutes to run the 
whole process from finding simple clones until the final cluster 
pruning. A total of 22,221 clone classes were detected with the 
minimum clone size of 35 tokens. These were condensed into 
13,262 clone patterns, from which we can select the significant 
ones depending upon the threshold values for FPC and FTC after 
the 3 layer pruning.  

8. RELATED WORK 
Different techniques have been deployed for the detection of 
simple clones. They can be broadly categorized based on the 
program representation and the matching technique. For program 
representation, the different options are plain text [13][21], 
tokens[5][22], abstract syntax trees[7], program dependence 
graphs [29][30], and metrics for code structures [28]. The 
different matching techniques include suffix tree based token 
matching [22], text fingerprints matching [21], metrics value 
comparisons [28], abstract syntax trees comparisons [7], dynamic 
pattern matching [28] and neural networks [12]. 

Our clone detection technique is similar to the one employed by 
CCFinder [22]. Many of the heuristics used in CCFinder are 
implemented in Clone Miner as well.  

CCFinder is easily configurable to read input in different 
programming languages like C, C+, Java and COBOL. A suffix-
tree matching algorithm is used for the discovery of clones. Some 
optimizations are applied to reduce the complexity of token 
matching algorithm.  

These optimizations include the alignment of token sequences to 
begin at tokens that mark the beginning of a statement like #, {, 
class, if, else etc. Considering only these tokens as leading tokens 
reduces the resulting suffix tree size to one-third. Another 
optimization is the removal of short repeated code segments from 
the input source like case statements in switch-case constructs and 
constant declarations. Very large files are truncated and “divide-
and-conquer” strategy is applied to find duplicates in them. 

In contrast to Clone Miner, CCFinder finds the clone pairs and 
then merges them to form clone classes. In Clone Miner, instead 
of maximal pairs, the maximal repeats are found directly, with 
similar space and time complexity. This saves the overhead of 
forming clone classes from clone pairs.  

Dup is another token based clone detection tool [4]. It finds 
identical clones as well as strictly parameterized clones, i.e., 
clones that differ only in the systematic substitution of one set of 
parameter values for another. These parameters can be identifiers, 
constants, field names of structures, and macro names but not 
keywords like while or if. The tool is text- and token-based and 
the granularity of clones is line-based where comments and white 
spaces are not considered. The algorithm used in this tool is based 
on a data structure called parameterized suffix tree [6], which is a 
generalization of a suffix tree. Dup is developed in C and Lex and 
only C code can be processed through Dup.  

For finding maximal parameterized matching, Dup’s lexical 
analyzer generates a string of one non-parameter symbol and zero 
or more parameter symbols for each line. The parameter and their 
positions are recorded in this parameterized string. This string is 
encoded in such a way that the first occurrence of each parameter 
is replaced by 0 and every later occurrence is replaced by the 
distance in the string since the previous occurrence. Non-
parameter symbols are left unchanged. This tokenization scheme 
ensures the strict parameterization requirement of Dup. The 
clones detected by Dup cannot cross file boundaries but can cross 
function boundaries. 

With the experience gained from the clone analysis of different 
software, it was observed that some short repeated segments of 
code turn up as multiple clone classes which are not very useful 
[22]. In Dup, these fragments of code had to be removed by hand. 
In CCFinder, the first 2 repetitions are reported and the rest are 
ignored. We have taken a different approach in Clone Miner. We 
do not report these short repetitions as clone classes, but rather we 
report them separately as repetitions. 

There is also strong connection between this work and the work 
done previously on the design recovery and program 
understanding of large legacy systems for ease of maintenance 
and reuse [8][9]. Clones, especially clusters of cloned files as 
found by our approach, provide useful insights into the program 
structure for better understanding of the program. We expect that 
some of the structural clones may hint at important concepts 
behind a program. The contribution of clone detection towards 
program understanding is also discussed in [20].  
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9. CONCLUSION AND FUTURE WORK 
In this paper, we described our strategy for detecting design-level 
similarity patterns, so-called structural clones, in programs. We 
apply token-based method to find simple clones first. For this, we 
use efficient suffix array based maximal repeats finding 
algorithm. Then, we apply data mining techniques to infer 
structural clones from simple clone data. With frequent closed 
itemset mining, we find the frequently occurring patterns of 
clones in different files. These patterns represent a clustering of 
files based on the similarity present among them. Finally, we 
perform a customized file clustering to extract the significant 
clusters, thereby filtering out the files that may contribute to a 
design level similarity pattern or structural clone.  

We designed a tool prototype, called Clone Miner, which 
implements our clone detection strategy. Experiments have shown 
that our method and tool can successfully find useful design-level 
similarity patterns, candidates for unification with generic design 
solutions. Programs after such unification are easier to understand, 
modify and reuse. 

To our best knowledge, the method described in this paper is the 
first attempt to detect design-level similarity patterns, beyond 
simple clones. It is also the first attempt to apply data mining 
techniques in the context of clone detection problem.   

Currently, we have applied our method to detect basic forms of 
structural clones, namely similar classes, files and complex 
gapped clones. The flexibility in our method allows us to extend it 
for finding other, more complex types of similarity patterns by 
performing similar analysis at methods, classes, modules or 
components level. Extending our method and Clone Miner for 
such context and experimentation with recovery of higher-level 
design similarities in various application domains is the top 
priority for our on-going work. 

Just like any design analysis activity, and also as any data mining 
application, clone detection is facilitated greatly with proper 
visualizations. Hence developing a graphical user interface for the 
Clone Miner is at the top of our priority list for future work. The 
visualizations will include browsing the source code detected as a 
clone instance, with the differences highlighted between the 
different instances of a clone class. 

Another important aspect of extending the clone detection is to 
cater for multiple languages. Currently, only Java source can be 
analyzed, but extending the system to support other languages can 
be easily incorporated because of the flexible design of the 
system. The only language dependant part of the clone detector is 
the lexical analysis and some language specific heuristics to 
optimize clone detection. Once the token string is generated, the 
remaining steps would all be identical. A challenging feature 
would be to provide multiple language facility within the same 
system, i.e., to cater for software systems that are written in 
multiple languages like the web applications. 

From the discussion on cluster mining, it is evident that real life 
clustering problems may have different and complex requirements 
as compared to the theoretical problems discussed in the literature. 
Sometimes we may require a unique solution tailored only for the 
given problem.  
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	ALGORITHM FOR FINDING FILES CONTAINING THE CLONE PATTERN
	For each clone pattern:
	Take the first clone class
	List all files that contain instances of this clone class
	For each clone class:
	If it does not contain all the clones of the pattern, prune 
	Output the final list
	Figure 4. Algorithm for finding files having the clone patte
	Market basket analysis is based on “frequent itemset mining 
	To normalize the data, Clone Miner transforms the data to ma
	FILE ID
	CLONE CLASSES PRESENT
	…
	…
	12
	900, 901, 902, 1500, 2800, 3800, 4000
	13
	1200, 1500, 4000, 4100, 4300, 4400, 4400
	14
	900, 901, 902, 1200, 1500
	…
	…
	Figure 5. Transformed clones per file
	Now the result from FIM will include 900, 901, 902, 1500, wh
	Another observation here is that mining all frequent itemset
	Because of the nature of the data mining problem, the algori
	FREQUENT CLONE PATTERN
	SUPPORT
	9,9,9,15
	2
	60 44 40 42 3 49 59 63
	4
	…
	…
	Figure 6. Sample frequent clone patterns with SUPPORT
	The output from this stage is in the format shown in Figure 
	Although this information is very useful, one important piec
	Clustering Highly Cloned Files

	The recurring patterns of simple clones found in the previou
	Some of these clone patterns could be quite significant and 
	To measure file coverage by a clone pattern, we calculate tw
	The first two rows in Figure 7 depict the clone pattern as e
	CLONE PATTERN
	9,9,9,15
	SUPPORT
	2
	FILE ID
	FTC
	FPC
	12
	1175
	29%
	14
	1175
	50%
	Figure 7. Frequent clone pattern with file coverage
	We now have to decide which clone patterns among those found
	We start by considering each clone pattern as a different cl
	Our clustering algorithm only involves iterative pruning of 
	EXPERIMENTATION
	We performed a number of tests on different parts of J2SE 1.
	ALGORITHM FOR CLUSTER PRUNING
	REQUIRE : initial clusters
	INPUT   : min FPC, min FTC
	Prune all the clusters with FPC of all files < min FPC and F
	Sort clusters based on the SUPPORT
	Secondary sort on max. FPC of all constituent files when SUP
	Starting from the smallest cluster, Prune clusters whose con
	Starting from the smallest cluster, prune clusters whose con
	Figure 8. Algorithm for cluster pruning
	A buffer contains data in a linear sequence for reading and 
	Table 1. Features in the Buffer Library
	LEVEL IN CLASS HIERARCHY
	FEATURE DIMENSION
	FEATURES
	level 1
	buffer data element type
	byte, char, int, float double, long, short
	level 2
	memory allocation scheme
	direct, nondirect
	level 2
	byte ordering
	native, non-native, Big_endian, Little_endian
	level 3
	access mode
	writable, read-only
	With manual domain analysis, it was found that the 71 buffer
	[T]Buffer: contains 7 buffer classes of type T.  T denotes o
	Heap[T]Buffer: contains 7 Heap classes of type T.
	Direct[T]Buffer[S|U]: contains 13 Direct classes. U denotes 
	Heap[T]BufferR: contains 7 Heap read-only classes.
	Direct[T]BufferR[S|U]: contains 13 Direct read-only classes.
	ByteBufferAs[T]Buffer[B|L]: contains 12 classes providing vi
	ByteBufferAs[T]BufferR[B|L]: contains 12 read-only classes  
	By performing the simple clones’ analysis of the Buffer Libr
	46 clone patterns were discovered by the FCIM algorithm when
	We also analyzed other parts of the J2SE 1.5 with Clone Mine
	OpenMBeanAttributeInfoSupport.java (FTC 1305 tokens, FPC 87.
	OpenMBeanParameterInfoSupport.java (FTC 1275 tokens, FPC 91.
	are detected as a cluster in package javax.management. openm
	Similarly, the 14 files with the same name of ObjectFactory.
	Further analysis may lead to the detection of even higher-le
	Table 2. Clone cluster analysis of J2SE 1.5
	MIN. FPC
	MIN. FTC
	NO. OF CLUSTERS
	NO. OF FILES
	50%
	35
	471
	2620
	50%
	500
	95
	298
	50%
	1000
	45
	185
	90%
	35
	188
	1012
	90%
	500
	42
	183
	90%
	1000
	23
	95
	The results shown in Table 2 indicate that significant gains
	TOOL IMPLEMENTATION
	The Clone Miner is implemented in C++ with the extensive usa
	The lexical analyzer for Clone Miner is built with ANTLR [3]
	We achieve the variable tokenization flexibility in the reve
	The user can also choose to suppress some token classes. For
	The detection of the short repetitive fragments, as discusse
	We have chosen the best algorithms available for the differe
	We performed several trial runs of Clone Miner on full J2SE 
	RELATED WORK
	Different techniques have been deployed for the detection of
	Our clone detection technique is similar to the one employed
	CCFinder is easily configurable to read input in different p
	These optimizations include the alignment of token sequences
	In contrast to Clone Miner, CCFinder finds the clone pairs a
	Dup is another token based clone detection tool [4]. It find
	For finding maximal parameterized matching, Dup’s lexical an
	With the experience gained from the clone analysis of differ
	There is also strong connection between this work and the wo
	CONCLUSION AND FUTURE WORK
	In this paper, we described our strategy for detecting desig
	We designed a tool prototype, called Clone Miner, which impl
	To our best knowledge, the method described in this paper is
	Currently, we have applied our method to detect basic forms 
	Just like any design analysis activity, and also as any data
	Another important aspect of extending the clone detection is
	From the discussion on cluster mining, it is evident that re
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