
Connecting Architecture Reconstruction Frameworks

Ivan T. Bowman, Michael W. Godfrey, Richard C. Holt

University of Waterloo,
Waterloo, Ontario, Canada,

{itbowman, migod, holt}@plg.uwaterloo.ca

Abstract

A number of standalone tools are designed to help developers understand software systems. These tools operate at dif-
ferent levels of abstraction, from low level source code to software architectures. Although recent proposals have sug-
gested how code-level frameworks can share information, little attention has been given to the problem of connecting
software architecture level frameworks. In this paper, we describe the TAXForm exchange format for frameworks at the
software architecture level. By defining mappings between TAXForm and formats that are used within existing frame-
works, we show how TAXForm can be used as a “binding glue” to achieve interoperability between these frameworks
without having to modify their internal structure.

Keywords:  Architecture reconstruction, exchange format, program understanding, repository.

1. Introduction

Researchers have designed several standalone frame-
works to help developers understand large software sys-
tems, including Ciao [4], Dali [10], ManSART [30], PBS
[9], Rigi [19], SPOOL [15], and TkSee [16]. These
frameworks are necessary because, for many systems,
there is no high-level documentation that accurately de-
scribes the current system implementation. Even where
documentation does exist, these tools are helpful because
they can help developers assess how closely a system’s
implementation matches its documented structure.

Program understanding frameworks can help to an-
swer questions about a software system at varying levels
of abstraction. At the code-level of abstraction [14],
frameworks can provide detailed answers to questions
such as:

1. What expressions are affected by the value stored
in variable a at a particular line in the program?

2. What are the possible values of variable b at a
given line in the program?

3. How can this program be expressed in another
programming language?

4. What functions may call function f?
Another important class of frameworks attempts to

find the high-level abstractions that are used in software
systems. These architecture-level frameworks (such as
PBS and Dali) aid in reconstructing a system’s software
architecture based on facts extracted from the system
artifacts— for example, source code, object files, Make-
files, and profiling results. Typically, these architecture-
level frameworks are not designed to answer questions at
the level of detail provided by the code-level frameworks.
Instead, they address architectural questions such as the
following:

1. What is a good subsystem decomposition of the
system?

2. Does the implementation of a software system
match its documented architecture? If not, where
does it deviate?

3. What are the dependencies between subsystems?
The reconstructed software architecture provides a high-
level description of the structure of a software system.

Recent work by Woods et al. [29] has suggested
CORUM as a possible standard to connect frameworks
that operate at the code level of abstraction. Kazman et
al. [14] have extended the CORUM standard with
CORUM II by incorporating concepts and tools from
software architecture frameworks. However, the
CORUM II proposal does not define an exchange data
format for use between architecture-level tools. The lack
of a standard exchange format does not prevent reuse
between architecture-level frameworks, but it does make
reuse difficult.

There are several reasons why it is important to be
able to share data between architecture-level frameworks.
First, it reduces the amount of duplicated effort that has
been required to date. Second, it allows researchers to
compare the results of applying their frameworks to the
same input, which can help to identify strengths and
weaknesses in the various tools. Finally, it allows devel-
opers who are attempting to reconstruct the architecture
of a system to opportunistically use tools from each of the
frameworks. For example, the developer could use a
parser from one framework, a clustering tool from an-
other, and a visualization tool from a third framework.

In addition to research-oriented frameworks, there are
a number of commercial tools that provide support for
reverse engineering and program-understanding activi-
ties, including Rational Rose [21], SNiFF+ [23], To-



gether/Enterprise [26], and Visio [27]. Our work to date
has focused on research-oriented tools for several rea-
sons: researchers are motivated to re-use components
between frameworks, and there are no restrictions on
discussion of internal formats for non-commercial tools.
Once we have designed a practical exchange format that
can be used with research-oriented tools, we hope to in-
vestigate the creation of a standard that can also be used
by commercial frameworks.

In this paper, we define an exchange format called TA
Exchange Format (TAXForm). This format allows ar-
chitecture-level frameworks to share extracted data. By
defining a mapping between facts from each framework,
TAXForm is intended to provide a common medium for
exchanging information about software systems that is
useful for reconstructing their architecture.

1.1. Organization

The remainder of this paper is organized as follows.
Section 2 describes our motivation for connecting archi-
tecture reconstruction frameworks. Section 3 provides an
overview of existing architecture reconstruction frame-
works. Section 4 describes the requirements for a suc-
cessful exchange format. Section 5 describes TAXForm
and shows how it meets the requirements. Section 6 de-
scribes how we evaluated TAXForm by implementing
several tools to convert from existing formats to TAX-
Form. Finally, Section 7 summarizes our results and de-
scribes future work.

2. Historical context

Several frameworks exist to reconstruct software ar-
chitectures, and there are good reasons for this diversity.
Researchers implement different research frameworks in
order to experiment with novel techniques; industrial
companies implement a variety of frameworks with dif-
fering features for competitive purposes. Storey et al.

[24] found that different tools support different under-
standing strategies. The variety of existing frameworks
allows developers to choose a program-understanding
framework that is most suitable for technical, political, or
budgetary reasons.

It is reasonable to expect that there will continue to be
a variety of frameworks intended to help developers re-
construct the architecture of software systems. However,
it is also desirable to be able to re-use components be-
tween these frameworks (where this is permitted by the
framework owners).

Recently [8], researchers from five universities
(Montreal, Ottawa, Toronto, Victoria, and Waterloo) and
two industry groups (Bell Canada and the Software Engi-
neering Institute) met to discuss the possibility of a com-
mon exchange format for information extracted from
computer programs. Together, these researchers are re-
sponsible for the Dali [10], PBS [9], Rigi [19], SPOOL
[15], and TkSee [16] tools, and all are interested in shar-
ing results and components between tools. At this meet-
ing, it was agreed that the creation of a common fact ex-
change format would be of significant mutual benefit.
This paper describes our work resulting from these dis-
cussions.

3. Overview of architecture reconstruction

While there are several different approaches to recon-
structing the architecture of a software system, there are
also several common requirements. An architecture re-
covery system extracts facts from a system implementa-
tion, then combines these facts into higher-level abstrac-
tions. The extracted facts may be of many forms. Re-
searchers have extracted information about function calls,
data accesses, file operations, and network communica-
tions to help reconstruct views of a system’s software
architecture. Furthermore, individual systems may have

Source
Code

Executing
System

Lexical
Analysis

Parsing

Profiling

Instrumented
Code

Change-Log
Reporting

Source
Control

Extracted
Facts

Visualization &
Manipulation

Reconstructed
Architecture

System Artifacts Fact Extractors Repository View Generation

Figure 1: Overview of architecture reconstruction frameworks.



system-specific facts that can be used to help understand
the system’s structure.

Figure 1 shows an overview of architecture recon-
struction frameworks (such as PBS [9] and Dali [10]).
These reconstruction frameworks use fact extractors to
determine facts about a system implementation. These
frameworks extract facts from system source code, exe-
cuting instances of the system, and source control logs.
All of these extracted facts are stored in a repository.
Next, a developer interacts with an abstraction tool
(which is often visual) to combine elements into higher-
level abstractions that describe the system architecture.

PBS, Rigi, and Dali use an entity-relation (ER) model
[3] to store facts extracted from the system implementa-
tion. Code elements (such as functions, variables, data
types, and source files) are represented as entities, and the
relationships between these entities (such as function
calls, uses of variables, and instantiations of data types)
are represented as relations. The possible entities and
relations are defined in a schema. Each entity may also
have associated attributes that describe properties such as
the entity’s name or line number.

In addition to the facts extracted from the system im-
plementation, these frameworks also store information
created by the framework and its users. For example, this
information might include a clustering of entities into
groups, as well as information pertaining to a visualiza-
tion of the structure. TAXForm does not yet have support
for these facts such as visualization information; this will
be addressed in future work.

Each of PBS, Rigi, and Dali use distinct schemas to
represent the facts extracted from system implementa-
tions and the derived facts created by the framework.
Several schemas may be used within a framework de-
pending on the particular source-code language used in
the system and the source of the extracted facts. Kazman
and Carrière [12] have described how it is useful to com-
bine facts from several different sources to complement
weaknesses in each particular fact extraction. For exam-
ple, they augmented static analysis of function calls with
profiling information to determine which instance of a
virtual function was invoked. Experience with these
frameworks shows that it is often necessary to create new
schemas that can be easily used with the framework.

3.1. The PBS source models

In this section, we describe the schemas used by PBS
as an example of the schemas used in architecture recon-
struction frameworks. When working with programs
written in the C programming language, PBS uses a fact
extractor called cfx to extract a source model of the sys-
tem. This source model is used to derive a higher-level
model that shows relationships between source files. Fi-
nally, a developer interacts with a visual abstraction tool
to group source files into related subsystems. The PBS
system then calculates relations between these newly
created subsystems based on the relations between the
contained files.

Figure 2 shows the schema used by PBS to store facts
extracted from systems written in C. This schema con-
tains entity classes, relation classes, and possible attrib-

Source File

include

defloc,deflocend
dclloc

Library Function

defloc,deflocend
dclloc

Function

vardefloc,vardclloc

Variable

sourceref
linkref

librarycall linkcall
sourcecall

vardcl
vardef

funcdcl

funcdcl
funcdef

macrodefloc

Macro

typedefloc

Type

structdefloc
structdeflocend

Struct

uniondefloc
uniondeflocend

Union

uniondefloc
uniondeflocend

Enum

macrodef
usemacro

typedef
usetype

structdef
usestruct

uniondef
useunion

enumdef
useenum

attributes

Entity Class

Legend

relation

Figure 2: PBS Low-level schema for the C programming language.



utes. The schema defines what types of entities are al-
lowed, the relations that are permitted between these
types of entities, and the attributes that may be stored for
each entity or relation. For example, the schema de-
scribed in Figure 2 allows us to store information about
two source files (A and B), and a include relation between
A and B. However, this schema does not allow us to store
a librarycall relation between A and B, since that type of
relation is not permitted between entities of type Source
File. The PBS source model is described in more detail in
the PBS documentation [9].

The schema shown in Figure 2 represents a detailed
source model of C programs. The analysis PBS performs
doesn’t require this level of detail. In fact, the detailed
facts make it difficult to visualize and understand the
extracted information. Instead, PBS abstracts facts stored
in the source model into a high-level model of the soft-
ware system. PBS uses the Grok [10] tool to perform this
abstraction. In addition to the facts that are derived from
the system implementation, PBS uses a subsystem con-
tainment hierarchy that is defined by a developer to rep-
resent groups of related files.

Figure 3 shows the high-level schema that is used by
PBS. This schema models facts between source files (rep-
resented by the Module entity class) and Subsystems.
Both Module and Subsystem entity classes inherit from
Software Element (this means that they inherit all of the
possible attributes and relations that can appear for Soft-
ware Element). For example, we can record a usevar re-
lation between a subsystem and a module. The contain
relation is used to record the subsystem hierarchy.

The PBS high-level schema is quite abstract, and this
high level of abstraction helps developers understand
large systems by reducing the clutter caused by low-level
details. PBS has been used successfully with this schema
to reconstruct the software architecture of several large
systems, including the Linux [2] operating system (con-
taining more than 800 KLOC).

4. Requirements for a connection standard

For architecture-level frameworks to share data, they
must all conform to a connection standard of some kind.
This standard could define an API that frameworks use to
read and write facts (this approach is used in the CORUM
standard). Alternatively, a connection standard can define
a file format that each framework must be able to read
and write. We have chosen the latter approach in defining
TAXForm. A connection standard defines the syntactic
form of a file format, and the schema of the facts stored
in the file format.

For a connection standard to be successful, it must
satisfy several criteria. Müller [18] proposed the follow-
ing criteria:
1. It should work for several levels of abstraction (e.g.,

code-level and architecture-level).
2. It should work for several source languages (e.g., C,

C++, Java, PL/I, Cobol, RPG).

3. It should scale to large systems (e.g., 3 to 10
MLOC).

4. It should support a mapping between enti-
ties/relations and the source code statements.

5. It should work for static and dynamic dependencies.
6. It should be incremental, so that it is possible to add

one subsystem at a time.
7. It should be a universal standard that is widely ac-

cepted.
8. It should be extensible, allowing users to define new

schemas for the facts stored in the format as needed.
Since we are only concerned with exchanging infor-

mation at the software architecture level, we do not con-
sider criteria 1 in this paper.

In addition to these requirements, we have identified
three particular problem areas that must be addressed by
a portable exchange format.

4.1. The naming problem

In an entity-relational model, each entity must have a
unique identifier. If a fact extractor has simultaneous ac-
cess to all of the source-code entities, then a unique num-

ber can be assigned to each entity and used as an identi-
fier. This approach, however, makes it difficult to com-
bine the results of different fact extractors since they will
assign different unique numbers to the entities they ex-
tract. In addition, if entities are identified by number then
it is difficult to compare two versions of a software sys-
tem since it is likely that corresponding entities will be
assigned different numbers in the two versions.

Instead of using numbers, existing architecture recon-
struction frameworks (such as PBS and Rigi) create an
identifier for each entity using the name of the entity in
the source code. This approach is also not perfect because
several languages allow a single name to be used for dif-
ferent entities. For example, the C language allows a
variable and a label to have the same name. Languages
such as Java and C++ allow function names to be over-

Module Subsystem

inherits inherits

contain

contain

Software Element

color, x, y, width, height
label
elision
description
navlink

useproc usevar implemented by

Figure 3: PBS high-level schema.



loaded based on the data types of their parameters. Most
modern languages allow identifiers to be re-used pro-
vided they are in different scopes.

If architecture reconstruction frameworks are to com-
bine extracted facts from multiple extractors, they must
assign consistent names to source code entities. Consis-
tent names can be created using mangled names. A man-
gled version of a source-code identifier would contain the
name-class of the entity (for example, label or variable),
and any required scoping information. For languages
such as Java and C++, the mangled name would include
the data types of the parameters of functions in order to
distinguish between overloaded instances of a function.

For languages such as C, C++, and Java, there is a
mangling algorithm that is used by compilers and linkers
for identifiers that have external linkage, that is, global
variables and functions. These language-defined man-
gling algorithms do not typically apply to local variables
or data types.

A portable exchange format should define a standard
way to uniquely identify source code entities. This
mechanism should be based on existing mangling
mechanisms defined by the source language, with exten-
sions to handle entities that are not uniquely identified by
the languages (such as local variables and data types).

4.2. The resolution problem

Fact extractors detect when one source code entity re-
fers to another, and record this as a relation. The algo-
rithm that the extractor uses to determine which entity is
referred to depends on the source language and the im-
plementation of the extractor. There are four categories of
resolution produced by fact extractors.

1. Not resolved. Lightweight extractors that use only
lexical information such as regular expressions do not
store enough context to resolve the use of an identifier to
any previous declaration. Instead, these extractors use the
name of the code entity as the entity identifier. This ap-
proach makes it easy to write extractors. However, sev-
eral source code entities with the same name may be in-
distinguishable in the extracted facts.

2. Resolved to declaration. Typically, compilers re-
solve each use of an identifier to a declaration of the
identifier. If the identifier has not been previously de-
clared, it is implicitly declared by its use in the source
code. A code entity may have several declarations, but
only one definition.

3. Resolved to static definition. When a software
system is compiled and linked, each source-code entity
has a single definition. The linker resolves all of the ref-
erences to global variables and functions to the appropri-
ate definition. There is no corresponding data type linker
for most compiler implementations.

4. Resolved to dynamic definition. Languages that
support dynamic binding (such as C’s function pointers
and C++ and Java’s virtual functions) can have relations
between source code entities that can not be statically
determined. For these relations, we must look at the dy-

namic behavior of the software system to determine
which source code entity is selected for a given identifier
at run-time. Extractors such as profilers can determine
which source code entity is chosen in a particular run of a
software system.

Different extractors emit facts with these four levels
of resolved references. Some extractors have goals that
prohibit them from accurately emitting references re-
solved to category 3 or 4. For example, Lethbridge and
Anquetil [16] describe how conditional compilation pre-
vents an extractor from determining a unique target for a
reference— there may be several possible definitions of a
given symbol, each one selected based on different build-
time options. Tools such as cfx (used in PBS) extract
facts only for a single system configuration. Since these
tools examine a particular configuration, they can choose
a unique binding for a reference— the same binding that
is chosen by a compiler building the system with the
same configuration options. However, this restricts the
extracted facts to a single system configuration instead of
all possible configurations. In different configurations, a
reference may bind to a different target, or not be bound
to a target at all.

To determine dependencies between systems, we need
extractors that support category 3 or 4. If an extractor
produces facts resolved to category 1 or 2, we can use it
as if it resolves references to category 3, or even 4. To do
this, we assume that each use of an identifier refers to all
entities with the same identifier. This approach produces
an overestimate of the relations within a system. This
overestimate of relations can be useful in some circum-
stances; for example, we can compare two fact extractors
(A and B), where A produces facts resolved to category 3
and B produces facts resolved to category 1. We can treat
facts extracted from B as if they were resolved to cate-
gory 3 if we make the overestimate assumption. If A ex-
tracts relations that are not extracted by B (despite the
overestimate assumption) then we can determine that
either A is incorrectly producing relations that do not
occur in the system implementation, or B is missing rela-
tions that may occur. If on the contrary, B extracts rela-
tions that are not extracted by A, we can determine noth-
ing in general because of our overestimate.

4.3. The line number problem

One attribute that can be recorded for source-code en-
tities is the location where they are defined within the
system’s source code. Conceptually, this consists of re-
cording the path to the source file that contains the entity,
and the line number that contains the entity’s definition.

In practice, there are some complications. First, it is
desirable that the location be reproducible if the extrac-
tion is performed on a different machine. In this case, the
path to the system’s source code may be different. For
reproducibility, we should store all file names relative to
the root of the system’s source code. Second, some
source-code entities are not defined on a single line (or
even in a contiguous range of lines). For example, a C++



namespace entity can occupy several distinct regions of
multiple source files. In addition, the pre-processor used
for C and C++ allows source code entities to span source
files. If we wish to accurately store the definition loca-
tions of all entities, we must store a set of location ranges.
Each range would store the path name of a source file
relative to the root of the software system, and the begin-
ning and ending character of the range.

The level of detail for storing entity locations varies
between extractors. Some extractors store no information,
others store the file name, beginning and ending line
number. Others store a sequence of file name, beginning
character and ending character. A portable exchange for-
mat should support these possibilities and provide a
mechanism for extractors to indicate what form of entity
location they are providing.

5. TA Exchange Format (TAXForm)

Figure 4 shows an example of how architecture level
frameworks can be combined to help reconstruct the ar-
chitecture of a software system. In this example, a devel-
oper uses extractors from the Dali, Rigi, and PBS frame-
works to extract facts from the system's source code. As
described by Armstrong and Trudeau [1], each of these
extractors has individual merits that might lead a devel-
oper to combine their results to get an accurate model of
the source code. After combining the extracted source
model into a repository, the developer uses the Bunch
clustering tool [17] in combination with the PBS viewer
and abstraction tools to find a good subsystem decompo-
sition of the system being considered. These tools store
the derived subsystem decomposition in the TAXForm
repository. Finally, the developer prepares an animated
presentation of the system's structure using the SHriMP
viewer tool [24] that is part of the Rigi framework. In
future work, we will extend TAXForm so that it can store
the views generated by the PBS viewer and Rigi's
SHriMP tool. By using converters to change between a
framework's internal format and TAXForm, we allow
existing frameworks and tools to work with each other
without changing their internal structure.

To enable the example described in Figure 4, we need
to define the TAXForm repository format and then im-
plement the converters that are used in the example. To
define TAXForm, we must define both the syntax of the
repository format and the schema of the facts that are
stored within the files. The schema defines what entities,
relations, and attributes are stored in a TAXForm reposi-
tory. TAXForm defines schemas for different levels of
abstraction and source language. For example, TAXForm
defines a high-level ‘module dependency’ schema that
records a single relation (depends-on) between modules.
TAXForm also defines a more detailed schema for pro-
cedural languages (TAXForm schemas are discussed in
more detail in Section 5.3).

TAXForm defines several schemas for facts extracted
from software systems. However, as discussed previ-
ously, developers often need to create new schemas to
describe entities and relations that are unique to a par-
ticular system or problem domain. TAXForm must be
able to accommodate these user-defined schemas in such
a way that facts stored in these schemas can be used by
visualization and abstraction tools that read and manipu-
late the extracted source model. TAXForm achieves this
extensibility by allowing users to define a transformation
between their user-defined schema and a TAXForm
schema. In this way, an abstraction tool can operate with
a user-defined schema by first transforming the facts into
the appropriate TAXForm schema.

The remainder of this section is organized as follows.
Section 4.1 describes the syntax of TAXForm. Sec-
tion 4.2 describes how we can transform facts from one
schema to another. Section 4.3 describes the schemas that
are defined by TAXForm. Finally, Section 5.4 describes
the overall structure of a TAXForm repository.

5.1. Exchange syntax

The syntactic form of the exchange format is an im-
portant point of standardization. Simple formats that are
easy to produce and consume have traditionally proved
quite useful. To date, several syntactic forms have been
used to store facts about software systems: Rigi uses the

PBS Extractor
(cfx)

Rigi Extractor
(rigiparse)

Dali Extractor
(SNiFF+)

TAXForm
Repository

PBS Viewer
and Abstraction

Tools

System
Artifacts

Bunch
Clustering Tool

Rigi SHriMP
Viewer

Dali to
TAXForm
Converter

Rigi to
TAXForm
Converter

cfx to
TAXForm
Converter

Bunch /
TAXForm
Converter

TAXForm to
Rigi Converter

Figure 4: Example of connecting frameworks.



Rigi Standard Format (RSF) to store facts as tuples [28].
PBS uses the Tuple-Attribute (TA) language [7]. Dali and
CIA use a relational database.

Other syntactic forms are appealing. For example,
XML is a standard format for describing and exchanging
structured data. Designing a useful exchange syntax is an
interesting problem for future study. For now, we propose
using TA as an exchange format. TA is a simple text-
based format that is easy to read and write.

A TA file consists of four sections:
• The Scheme Tuple section describes the schema

of possible entity classes and relations between
these classes.

• The Scheme Attribute section describes all of
the possible attributes for each entity class and
relation class.

• The Fact Tuple section records entities and rela-
tions. Each entity is defined using the
$INSTANCE relation, which defines an entity’s
class.

• The Fact Attribute section defines the attributes
for each entity and relation.

Figure 5 shows an example TA file that records in-
formation about function calls in C source code. When
extracting facts from a system, there would be one such
TA file for each source file in the system; these files
could later be combined into a single TA file representing
the entire system. The TA file describes the schema (al-
lowed entity classes, relation classes, and attributes) and
facts (actual entities, relations, and attributes). In this
example, the schema has one entity class (function) and
one relation (call) that can connect functions. The TA file
also specifies the attributes that can be stored. The func-
tion entities have an attribute (static_fn) that is true if a

function is static instead of global. The call relation can
have an attribute (line_number) that specifies the line
number where the function call occurs. In addition to the
schema, the TA file contains extracted facts. This exam-
ple has two functions (f1 and f2). There is a call recorded
from f1 to f2. Finally, the TA file records the attributes of
the entities and relations. In this example, f1 is a static
function, while f2 is a global function. The call from f1 to
f2 occurs on line 2 of the source file associated with the
TA file.

The PBS documentation [7] defines the TA syntax in
detail. We are continuing to work on defining extensions
to the TA format to support exchanging facts. For exam-
ple, TA files can contain comments that name the devel-
oper that extracted the facts and the tools that were used
during the extraction. We are defining a standard form for
these comments to make it easy for tools to automatically
extract this information.

5.2. Transforming facts to a different schema

TAXForm allows developers to define new schemas;
these schemas are integrated into the TAXForm reposi-
tory by transforming them as necessary into a form that
tools can use. For example, facts extracted by PBS can be
converted from the PBS C language schema to the TAX-
Form C schema.

If we wish to transform facts from one schema (S1) to
another (S2), then we must define an algorithm that de-
fines how entities, relations, and attributes will be created
in the target schema based on the extracted facts. Holt
describes how these types of transformations can be per-
formed using Tarski relational algebra [10]. The trans-
formation can be encoded in an algorithm in the Grok
language.

One case where transforming the facts is trivial occurs
when the source schema (S1) is a subset of the target
schema (S2). If S2 contains all of the entity classes, rela-
tions, and attributes that are found in S1, then facts that
conform to S1 also conform to S2. In this case, no trans-
formation is needed.

In general, S1 will not be a subset of S2. For example,
S1 may represent facts at a lower level of detail (func-
tions and variables) than S2 (file level facts). In this case,
the transformation algorithm must combine all of the
function and variable entities in S1 into the files that
contain them. Then, the algorithm must induce relations
between files based on the relations between the con-
tained functions and variables.

In addition to transformations based on entities and
relations, it may be necessary to perform transformations
that consider the values of attributes for entities and rela-
tions. For example, S1 might store all functions (static or
global) as a single entity class, using an attribute to dis-
tinguish between the two types of function. If S2 uses
different entity classes for global and static functions,
then the transformation algorithm must choose the target
entity class based on the entity class in S1 and the value
of the distinguishing attribute.

// A comment line
SCHEME TUPLE :
call function function

SCHEME ATTRIBUTE :
function {
  static_fn
}
(call) {
 line_number
}

FACT TUPLE :
$INSTANCE f1 function
$INSTANCE f2 function
call f1.c f2.h

FACT ATTRIBUTE :
f1 {
  static_fn=true
}
f2 {
  static_fn=false
}
(call f1 f2) {
  line_number=2
}

Figure 5: An example of TA



Another type of transformation that may be needed is
a renaming of entity identifiers. As discussed in Sec-
tion 4.1, different fact extractors may choose different
methods to uniquely identify extracted entities. Trans-
forming facts from one schema to another may require
that the naming scheme be changed to match.

A variety of rules can be used to define transformation
algorithms from facts stored in one schema into facts that
conform to another schema. However, it is important to
ensure that these transformations preserve the meaning of
the stored facts. For example, it probably does not make
sense to transform a function in one schema into a vari-
able in another schema. It is possible to define such a
transformation, but the result is probably not useful.
When defining transformation algorithms between sche-
mas, developers must consider the meaning of the entities
and relations.

5.3. TAXForm schemas

The facts that are used when reconstructing software
architectures come from a variety of programming lan-
guages using a variety of fact extractors. The wide vari-
ance in semantics of various languages and extractors
makes it difficult (if not impossible) to define a single
schema that can accurately represent all of the informa-
tion that various frameworks wish to store. Instead of
trying to define a single such schema, TAXForm defines
a set of schemas and describes transformation algorithms
between them.

Figure 6 shows a subset of the TAXForm-defined
schemas and how they can be transformed to each other.
These schemas vary in their level of abstraction (with the
Universal schema being most abstract), and the domain
of languages to which they apply.

 Figure 6 shows arrows between two schemas if there
is a transformation algorithm from one to the other. In
general, low-level schemas can only be transformed
meaningfully into higher-level schemas. An exception is

that the schema for the C language can be transformed
into the schema for the C++ language since C is a subset
of C++.

When combining facts from two different extractors,
we can transform both sets of facts into a common TAX-
Form-defined schema. If both extractors record the same
type of information (such as function calls), then we can
find a least-common-denominator schema, that is, a well-
defined schema that can describe the facts extracted by
both extractors. If they extract different types of informa-
tion (for example, one extractor shows function calls, the
other shows which developers worked on a file), then we
can create a new schema that is a composite of both ex-
traction schemas. This composite schema can be defined
as a TAXForm schema in terms of the definitions of its
constituent schemas, including the associated transfor-
mations.

Figure 7 shows the most-abstract schema possible—
the Universal Schema. This schema contains only a
single entity class and a single relation type (the names
are taken from TA’s documentation [7]). Any particular
schema can be transformed into the Universal Schema by
mapping all entity classes to $ENTITY and all relation
types to be $RELATION. The existence of a most-abstract
schema guarantees that facts from two sources can al-
ways be combined into a common fact base, although the
results may be too abstract to be useful.

To ensure that extracted facts are sufficiently concrete
to be useful, we must define a set of schemas that are less
abstract. Figure 8 shows a high-level schema that de-
scribes software systems at an abstract level. This schema
contains two entity classes: modules, which correspond to
architecturally relevant groups of resources (a source file
might be stored as a module), and subsystems. Subsys-
tems contain modules as well as other subsystems— this
containment hierarchy is usually defined as part of the
reconstruction of the software architecture. This schema
stores a single extracted relation, depends-on. A module
may depend on another module for several reasons: it
might call a function or access a variable defined in the

Universal

High-Level

Procedural
Language

Object-Oriented
Language

PL/I C C++ Java

TAXForm-
Defined Schema

can be
transformed to

Legend:

Figure 6: Transformations between schemas.

$ENTITY

$RELATION

Figure 7: TAXForm Universal Schema.

Module

depends-on

Subsystemcontains

contains

Figure 8: TAXForm high-level schema.



other module, or it might open a socket connection that is
accepted by the other module. No distinction is made in
this schema between the many forms of dependency.

This high-level schema is still quite abstract, but it can
be used for several interesting forms of analysis. For ex-
ample, we can determine if an as-built architecture devi-
ates from the intended architecture by finding a depend-
ency between modules in subsystems that are supposed to
be independent. We can identify subsystems that can be
reused in other systems, and determine what other sys-
tems may be required based on the dependency informa-
tion. If an architectural abstraction tool (such as the
Bunch clustering tool [17]) uses only the schema in
Figure 8, then it can work with all of the TAXForm-
defined schemas since they can all be transformed to this
schema.

The high-level schema of Figure 8 can be elaborated
for specific programming language types. Figure 9 shows
a schema that represents a source model of procedural
languages such as C or PL/I. This schema records infor-
mation about source files, data types (e.g., structures,
unions, and enumerations), procedures, and data (e.g.,
variables, enumerators, and manifest constants). The
schema indicates where entities are defined: either at the
global scope of a source file, or within a procedure. The
schema also records uses information between the enti-
ties. A source file may use another file, for example by
the C #include pre-processor directive. A procedure
may use data types (for example, as a return type, pa-
rameter type, or cast type), data entities (for example,
reading or writing a variable), and other procedure enti-
ties (for example, for function calls, or to take the address
of a procedure). Data entities use their data type. The
schema described in Figure 9 is more detailed than the
high-level schema, and it supports more precise forms of
architectural analysis. For example, the as-designed ar-
chitecture for a system may stipulate that one subsystem
contains procedures that may be called from outside the
subsystem, but that no data should be accessed from out-
side the subsystem. Using the schema in Figure 9, we can
evaluate whether the as-built architecture conforms to
this stipulation.

The schema in Figure 9 could be elaborated still fur-
ther to model details that are unique to a particular pro-
gramming language, such as C or PL/I. Also, TAXForm
can define schemas for object-oriented languages such as
Java and C++. We are working to define these schemas
based on existing formats used in architecture recon-
struction frameworks.

5.4. The structure of a TAXForm repository

A TAXForm repository must contain (or refer to) sev-
eral documents and facts, including the following:

1. A schema describing the entities, relations, and
attributes that are stored in the repository.

2. Algorithms to transform between the schema be-
ing used and other TAXForm schemas.

3. A document describing the meaning of the enti-
ties, relations, and attributes.

4. The facts extracted (or derived) from the system
implementation.

Only the schema and extracted facts are stored explicitly
in the TA files containing the repository. The transfor-
mation algorithms and documentation are identified by a
reference in a comment in the TAXForm file. For exam-
ple, a TAXForm repository might refer to the PBS
framework documentation if it conforms to PBS's docu-
mented behavior.

The transformation algorithms can be formalized us-
ing Tarski relational algebra, and executed using the
Grok tool [10]. These algorithms need only be defined
once for each schema, and referred to by the repositories
that use the schema.

Schema documentation requires that we document the
meaning of entities, relations, and attributes. Developers
will use this information to determine how to create
transformation algorithms without making logically in-
consistent mappings (such as mapping functions to vari-
ables). This documentation might be written in a devel-
oper's natural language, or expressed more formally. For
example, Kazman et al. [13] suggest one set of features
that can be used to characterize architectural elements. In
addition to documenting the meaning of the contained
facts, this documentation must identify how the schema
solves the naming problem (see Section 4.1), the resolu-
tion problem (see Section 4.2), and the line-number
problem (see Section 4.3).

Thus, a TAXForm repository consists of a set of files
in the TA format. These files specify a schema (in the TA
schema sections), and extracted or derived facts (in the
TA fact sections). These files also refer to documentation
and transformation algorithms that allow the repository to
be converted to another schema.

Developers that use a TAXForm repository do so by
choosing (or defining) a schema that satisfies the analysis
they wish to perform. Next, facts that do not conform to
this schema are transformed into the schema using the

Source
File

uses
file

Data Type

defines

Procedure Data

defines
defines

uses
type

uses
data

defines defines

uses
procedure

uses type

Figure 9: TAXForm procedural language schema.



defined algorithms. The developer uses tools that operate
on the facts as though they were defined in the desired
format. If no transformation to the desired schema is de-
fined, then the developer can consult the documentation
associated with the repository to determine if such a
transformation is meaningful. If so, the developer can
define a new transformation algorithm based on the
documentation. Otherwise, it is not meaningful to apply
the tool to the TAXForm repository.

6. Evaluation of TAXForm

In order to evaluate the effectiveness of the TAXForm
exchange format, we implemented conversion utilities
that translate from tool-specific notations into TAXForm.
To date, we have implemented converters for Ciao [4],
Dali [10], Datrix [5], PBS [9], and Rigi [19]. We have
also designed a converter for TkSee [16] based on its
documentation. By implementing tools that convert from
the formats used by these frameworks, we were able to
gain insight into the suitability of TAXForm as a general
exchange format.

The first operation we performed in implementing our
converters was to convert the facts into the TA syntax,
while keeping the facts in the tool’s original schema. For
Ciao and Dali1, this involved executing queries against a
relational database to emit a text file containing both the
schema definition and the extracted facts. The Datrix tool
emits an AST; we implemented a tool that reads this
AST, and emits a TA file that contains facts in an en-
tity/relational model. The Rigi tool emits facts in Rigi
Standard Form (RSF), which is easily converted to TA
format by combining it with a schema definition. Finally,
the PBS, and TkSee tools are already using the TA file
format, and thus did not need converters to match the
TAXForm syntax. In general, we found that it was easy
to convert from tool-specific storage formats into the
TAXForm syntax, provided we have access to documen-
tation describing the tool-specific format.

After converting to the syntactic format of TAXForm,
we attempted to define mappings from the different
schemas into the TAXForm procedural language schema
described in Figure 9. One issue that was difficult to ad-
dress was the consideration of resolving references. Dali,
Ciao, and PBS use a ‘linker’ that resolves all references
to the target definition. In contrast, Datrix, Rigi, and
TkSee do not use such a linker. For these three frame-
works, some references identify the declaration of the
target, not the definition. The Datrix team is developing
such a linker. For Rigi, we defined a linker based on the
semantics of the C language. For TkSee, the designers
allow developers to examine partial or inconsistent sys-
tems; for these systems, there is no way to correctly re-
solve references. If we restrict ourselves to complete and
consistent systems we could implement a linker for the
facts extracted by TkSee.

                                                       
1 The Dali translator was implemented by Jeromy Carrière.

We were able to define simple transformations that
convert from the schemas used by Dali, Ciao, and PBS
into the TAXForm procedural language schema, and we
implemented these transformations with the Grok [10]
relational calculator.  For Rigi, we implemented a linker
using Grok, then converted to the TAXForm procedural
schema using transformations defined in Grok. For Datrix
and TkSee, we designed transformations that can convert
the extracted facts to the TAXForm schema, but we have
not yet implemented these transformations.

Overall, we found that it was relatively easy to con-
vert to the syntactic form of TAXForm. However, we
found that transforming from tool-specific schemas to the
TAXForm schema required careful study of the tool-
specific schema; each tool uses different terminology
with different underlying assumptions about the seman-
tics of stored facts. We found that we need to consider the
issues raised in Section 4 when implementing extractors:
the frameworks we examined used different naming con-
ventions to identify entities, associate line number infor-
mation, and resolve references.

In order to validate our translators, we exercised them
with source models extracted from several real-world
systems. Table 1 summarizes the subject systems that we
used to test our translators.

System Size Language Tool
Jikes 77 KLOC C++ Ciao

Linux 800 KLOC C Dali, PBS
Mozilla 904 KLOC C Rigi
Nachos 10 KLOC C++ Ciao

Table 1: Summary of systems used with translators.

We used Ciao to extract a source model from both
Nachos, an operating system simulator used for educa-
tion, and Jikes, a Java compiler. Both of these systems
were written in C++. We found that we were able to con-
vert from the Ciao format to TAXForm by writing que-
ries that operate on the Ciao database. Ciao stores file and
line numbers for each entity, and identifies all entities
using unique integers.

We also examined Linux, a Unix-like operating sys-
tem. We used two source models for Linux, extracted by
PBS and Dali. The PBS tool creates a source model that
is in the TA format, but not in the TAXForm procedural
language schema. We used transformations written in
Grok to transform to the TAXForm schema. PBS uses the
source-code name of entities as their identifiers; this
means that PBS cannot store facts about two different
entities with the same source code name (for example,
two static functions in different files). PBS also stores the
source file name for all entities. The Dali group provided
us with a source model of Linux in TA format, along with
documentation describing the semantics of how they ex-
tracted this model. We were able to transform this model
into the TAXForm procedural language schema. The
facts extracted by Dali used the enclosing source file
name as part of the unique identifier for entities (allowing



for multiple entities with the same simple name), but did
not record line number information.

Finally, we converted a source model of the Mozilla
web-browser that was extracted by the Rigi group. This
source model represents facts about 904KLOC of C code
(it does not model the C++ portion of Mozilla, which is
about 800KLOC). We converted from the Rigi format to
the TAXForm schema by first implementing a linker,
then transforming to the new schema. The Rigi source
model uses entity identifiers that are composed of the
source file name, source code name, and line number.
This structure allows Rigi to represent facts about differ-
ent entities with the same simple name.  We were able to
translate the file name and line number information as
extracted by Rigi into the TAXForm format.

We were able to use the converted facts for each of
these large, real-world systems with PBS. Each of the
frameworks we considered had different formats for en-
tity identifiers and source code locations. We were able to
convert all source code locations to a single format, but
we have not yet implemented a solution that converts all
entity identifiers to a common format. This means that we
can not yet combine source models extracted by different
frameworks, although we can use each of these source
models independently. We are continuing to work on the
issue of entity identifiers. It appears that we need to
modify the existing frameworks to provide more infor-
mation to permit us to do this mapping.

7. Conclusions

To date, no significant reuse has been possible be-
tween frameworks operating at the software architecture
level of program comprehension. Instead, developers of
these tools have re-implemented functionality such as
parsers, clustering tools, and visualization tools. Reuse
has been problematic because there is no standard format
for exchanging facts between these frameworks.

In this paper, we have described the TAXForm ex-
change format for representing information that is useful
to frameworks performing architectural reconstruction.
Instead of defining a single schema, TAXForm defines a
hierarchy of related schemas and shows how extracted
facts can be transformed between various schemas. Each
extracted fact base records the semantics of the schema it
conforms to, and also records how this schema can be
transformed to other schemas. This mapping information
can be used to combine facts from two different extrac-
tors into a common schema. Since TAXForm does not
define a single authoritative schema, developers are free
to create a schema that best fits the facts that are inter-
esting for a particular system (provided that they describe
how their schema can be transformed into other schemas
they wish to operate with). This flexibility, in combina-
tion with the simple text-based syntax of TAXForm, sug-
gests its use as a standard exchange format for frame-
works operating at the architecture-level.

We have implemented TAXForm converters to work
with facts extracted by Ciao, Dali, PBS, and Rigi. By

using these converters, the PBS framework is able to
visualize and manipulate facts extracted by these frame-
works; if other frameworks are modified to read the
TAXForm exchange format, they will also be able to
operate with these facts.

By providing a standard format for exchanging infor-
mation, TAXForm allows researchers to compare ex-
perimental results and makes it possible for developers to
opportunistically choose tools from different frameworks
to best solve the problem of reconstructing a system's
architecture.

Acknowledgements

We would like to thank several people who have
helped us to develop the ideas presented in this paper,
during meetings at WCRE'98 and CASCON'98. Nicholas
Anquetil, Jeromy Carrière, Gary Farmaner, Ruedi Keller,
Bruno Lague, Tim Lethbridge, Hausi Müller, Patrick
Page, Daniel Proulx, Derek Rayside, Reinhard Schauer,
and Kenny Wong contributed at these meetings. In par-
ticular, we would like to thank Tim Lethbridge for clari-
fying the issues related to resolving references. In addi-
tion to providing helpful feedback, Jeromy Carrière im-
plemented the translator from Datrix to TAXForm. We
would like to thank the developers of Ciao for providing
us with a copy of their framework. We thank Susan Sim
for helpful feedback on earlier draft of this paper. We
would also like to thank Bruno Lague and the Bell Datrix
group for helping to motivate TAXForm by providing a
reusable C++ extractor.

References
[1] Matt Armstrong and Chris Trudeau. Evaluating Archi-

tectural Extractors. In Proc. of WCRE-98. Honolulu,
HI, October 12-14, 1998.

[2] Ivan Bowman and Richard C. Holt. Linux as a case
study: its extracted software architecture. In Proc. of
ICSE-99, Los Angeles, CA, May 1999. To appear.

[3] Peter Chen. The Entity-Relationship Model— Toward a
Unified View of Data. ACM Trans. on Database Sys-
tems, 1(1):9-36, March 1976.

[4] Yih-Farn Chen, Glenn S. Fowler, Eleftherios Koutso-
fios, Ryan S. Wallach. Ciao: A Graphical Navigator for
Software and Document Repositories. In Proc. of
ICSM-95, pages 66-75, Nice, France, October 1995.

[5] Datrix analysis tool. Bell Canada Quality Engineering
Lab.  http://www.iro.umontreal.ca/labs/gelo/datrix/

[6] P. Devanbu. Genoa— a language and front-end inde-
pendent source code analyzer generator. In Proc. of
ICSE-14, pages 307-317, 1992.

[7] Ric Holt. An introduction to TA: The Tuple-Attribute
language. Available at http://www-turing.cs.-to-
ronto.edu/pbs/papers/ta.html

[8] Ric Holt, editor. Conclusions from the Data Exchange
Group Meeting. At CASCON’98 Nov. 30, 1998.
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minut
es98_11_30.html

[9] Ric Holt. Software Bookshelf: Overview and construc-
tion. Available at http://www-turing.cs.toronto.edu/-
pbs/papers/bsbuild.html



[10] Ric Holt. Structural Manipulations of Software Archi-
tecture using Tarski Relational Algebra. In Proc. of
WCRE-98. Honolulu, HI, October 12-14, 1998.

[11] Rick Kazman, S. Jeromy Carrière. Playing Detective:
Reconstructing Software Architecture from the Avail-
able Evidence, Journal of Automated Software Engi-
neering, 1998.

[12] Rick Kazman, S. Jeromy Carrière. View Extraction and
View Fusion in Architectural Understanding. In Proc.
of ICSR-5, Toronto, Canada, June 1998.

[13] Rick Kazman, Paul Clements, Len Bass, Gregory
Abowd. Classifying Architectural Elements as a Foun-
dation for Mechanism Matching. In Proc. of
COMPSAC-97, Washington, DC, August 1997, pp. 14-
17.

[14] Rick Kazman, Steven Woods, S. Jeromy Carrière. Re-
quirements for Integrating Software Architecture and
Reengineering Models: CORUM II. In Proc. of WCRE-
98, pages 154-163, Honolulu, HI, October 1998.

[15] Rudolf K. Keller, Reinhard Schauer, Sebastien Robi-
taille, and Patrick Page. Pattern-based reverse engi-
neering of design components. In Proc. Of ICSE-99,
Los Angeles, CA, May 1999. To appear.

[16] Timothy Lethbridge and Nicolas Anquetil. Architec-
ture of a Source Code Exploration Tool: A Software
Engineering Case Study. University of Ottawa, Com-
puter Science Technical report TR-97-07, 1997.

[17] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, E.R.
Gansner. Using Automatic Clustering to Produce High-
Level System Organizations of Source Code. In Proc.
of IWPC'98, Ischia, Italy, June, 1998.

[18] Hausi A. Müller. Criteria for Success of an Exchange
Format. Workshop meeting, CASCON’98. 30 Novem-
ber, 1998. Available at: http://plg.uwaterloo.ca/~holt/-
sw.eng/exch.format/criteria_muller.html

[19] Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley,
and James S. Uhl. A reverse engineering approach to
subsystem structure identification. Journal of Software
Maintenance: Research and Practice, 5(4), pages 181-
204, December 1993

[20] Gail C. Murphy and David Notkin. Lightweight Lexi-
cal Source Model Extraction. ACM Trans. on Software
Engineering and Methodology 5, 3 (July 1996): 262-
292.

[21] Rational Rose 98i. Product Information. Rational
Software Corporation. http://www.rational.com/
products/rose/index.jtmpl

[22] David Rosenblum and Alexander Wolf. Representing
Semantically Analyzed C++ Code with Reprise. In
USENIX C++ Conference Proceedings, pages 119-
134, April 1991.

[23] SNiFF+ v2.3. User’s Guide and Reference, TakeFive
Software. http://www.takefive.com, December, 1996.

[24] Margaret-Anne Storey and Hausi A. Müller. Manipu-
lating and Documenting Software Structures Using
SHriMP Views. In Proc. of ICSM-95, pp. 275-285.

[25] Margaret-Anne Storey and Kenny Wong. How Do
Program Understanding Tools Affect How Program-
mers Understand Programs? In Proc. of WCRE-97.
Amsterdam, Holland, pages 12-21, October 6-8, 1997.

[26] Together/Enterprise. Product Overview. Object Inter-
national Software. http://www.oi.com/

[27] Visio Enterprise 5.0. Product Overview. Visio Corpo-
ration. http://www.visio.com/products/enterprise/

[28] Kenny Wong. Rigi User’s Manual. Version 5.4.1, July
10, 1996. Available at http://www.rigi.csc.uvic.ca-
/rigi/manual/user.html

[29] Steven Woods, Liam O’Brien, Tao Lin, Keith Galla-
gher, Alex Quilici. An Architecture for Interoperable
Program Understanding Tools. Proc. of IWPC’98. Is-
chia, Italy, June 24-26, 1998.

[30] Alexander Yeh, David Harris, and M. Chase. Manipu-
lating recovered software architecture views. In Proc.
of ICSE-19, pages 184-194, May 1997.


