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Abstract—Cloud providers and data centers rely heavily on 

forecasts to accurately predict future workload. This information 
helps them in appropriate virtualization and cost-effective 
provisioning of the infrastructure. The accuracy of a forecast 
greatly depends upon the merit of performance data fed to the 
underlying algorithms. One of the fundamental problems faced 
by analysts in preparing data for use in forecasting is the timely 
identification of data discontinuities. A discontinuity is an abrupt 
change in a time-series pattern of a performance counter that 
persists but does not recur. Analysts need to identify 
discontinuities in performance data so that they can a) remove 
the discontinuities from the data before building a forecast model 
and b) retrain an existing forecast model on the performance 
data from the point in time where a discontinuity occurred. 
There exist several approaches and tools to help analysts identify 
anomalies in performance data. However, there exists no 
automated approach to assist data center operators in detecting 
discontinuities in the first place. In this paper, we present and 
evaluate our proposed approach to help data center analysts and 
cloud providers automatically detect discontinuities. A case study 
on the performance data obtained from a large cloud provider 
and performance tests conducted using an open source 
benchmark system show that our proposed approach provides on 
average precision of 84% and recall 88%. The approach doesn't 
require any domain knowledge to operate. 
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I. INTRODUCTION 
To effectively run a data center, appropriate virtualization 

and cost-effective provisioning of the infrastructure, with 
respect to the type and size of the service requests (i.e., the 
workload), needs to be implemented. Overestimating the 
necessary infrastructure for a set of requested services in a 
specified period leads to waste, under-utilization, and increased 
costs. However, under-estimation of the future workload is also 
unacceptable, since it degrades the quality of the service and 
may lead to violations of client Service-Level Agreements 
(SLAs). To ensure SLAs are met, while minimizing 
infrastructure costs, data center operators need to know ahead 
of time, (i.e., short and long-term forecasts) the expected 
workload. The aim of the short-term forecast is to provide 
accurate predictions of workloads in the near future, e.g., one 
or two hours ahead, usually based on a week to a month of the 
data center’s recent performance history. The data center 
operators use the short-term forecasting for dynamic 
provisioning and placement of tasks in a data center, especially 
for load balancing to avoid performance bottlenecks. Accurate 
short-term forecasting permits near-optimal provisioning, thus 
improving usage of the available infrastructure. Long-term 
forecasting of the workload is necessary for capacity planning 
to ensure that the cloud infrastructure supports growth and 

evolution of client requirements.  To capture the seasonality 
patterns, long-term forecasting requires the use of at least a 
year of recent performance history from one or more data 
centers to predict expected workloads. The accuracy of 
forecasting results depends on the quality of the performance 
data (i.e., performance counters; such as CPU utilization, 
bandwidth consumption, network traffic and Disk IOPS) fed to 
the forecasting algorithms, i.e., missing value imputation, 
calculating and adjusting times stamp drifts of logged 
performance data across hundreds of VMs, identification and 
removal of outliers and anomalies and in cases, scaling and 
standardizing the data to remove bias among performance 
counters. 

In a typical cloud environment, a large number of elements 
(i.e., VMs, routers, chillers and sensors) continuously generate 
large traces of performance data (terabytes (TB) in size) further 
complicating the data preparation step. Hence, practitioners 
and data scientists spend considerable time (e.g., up to 80% 
[1]) in preparing data for their forecast algorithms. One of the 
fundamental problems faced by analysts in preparing data for 
long-term forecast is the identification and removal of data 
discontinuities. To date, there does not exist any automated 
approach to assist data center operators in detecting 
discontinuities in the performance data.  Data discontinuity is a 
special kind of anomaly that differs from behavioral and 
environmental anomalies, and must be addressed before 
making a forecast. A behavioral anomaly is an inconsistent 
behavior, when systems have been provisioned identically are 
receiving similar traffic (i.e., though a load balancer). An 
environmental anomaly results from lack of uniformity 
between the servers in a data center (usually over time). For 
example, even when the system is identically provisioned, drift 
often happens during the course of normal operations. 

A discontinuity is an abrupt change in a time-series pattern 
that persists but does not reoccur, as shown in Fig. 1.  
Examples include a) a significant change in a counter’s value 
b) a significant change in the slope (rate of change) of the 
counter’s value, c) a significant change in a period cycle or 
amplitude or both. Discontinuities such as those shown in Fig. 
1 do not occur instantaneously, but over a brief period called a 
transition period. If an analyst recognizes that a discontinuity 
has occurred, (s)he may want to ignore the early data and base 
their forecast on the measurements taken after the 
discontinuity. Moreover, detecting a discontinuity provide 
analysts a reference point to retrain their forecasting models 
and make necessary adjustments.   

Therefore, analysts require automated techniques that can 
identify discontinuities among thousands of performance 
counters collected across hundreds of machines. Such 
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techniques should be intelligent enough to distinguish 
discontinuities from anomalous data that should be ignored or 
removed within input data, such as  irregularities in which a 
few individual performance counter values deviate 
significantly from the general pattern but do not persist; 
seasonal variations and recurring patterns that should be 
accommodated such as workload volumes that decrease each 
weekend but return to normal on Monday, and observed 
growth that should be suitably anticipated b) recurring patterns 
such as exponential growth of workload, i.e., where the slope 
of counter(s) changes smoothly ⎯ though perhaps rapidly ⎯ 
with time.   

We identify the main contributions of this paper as: 

1. We provide an overview of the entire forecasting 
process for a typical data center. 

2. We provide an accurate and novel approach for 
identifying discontinuities in performance data.  

3. To our knowledge, this is the largest study to date for 
detecting discontinuities; we use performance data 
from 5,000 machines over a span of seven years. 

4. We empirically evaluated our proposed approach on 
both the data obtained from a large cloud service 
provider and performance experiments conducted 
using an open-source benchmark system. We show 
that our proposed approach can achieve up to 91% 
average precision and 95% average recall.  

Organization of the paper: 
The rest of the paper is organized as follow. We describe a 

typical forecasting process in section II. We then present our 
proposed approach in section III, followed by a case study 
setup along with case study findings in section IV. The 
discussion of the findings of the case study is presented in 
section V. We discuss limitations and threats to the validity of 
our approach in section VI, followed by a description of related 
work in section VII. Finally, we summarize our work and 
sketch possible future research in Section VII.  

II. STEPS INVOLVED IN FORCASTING  

A. Determine Purpose: Initially a department, team or a 
stockholder requests a forecast. Usually, a dedicated group or 
team of analysts is responsible for handling the forecast 
requisition.  The analysts gather preliminary information from 
the requestor, i.e.,  a) forecast purpose (e.g., operations are 
interested to know expected workload volume on a daily to 
weekly basis for load balancing and dynamic placement of 
machines, whereas, marketing and sales are more concerned 
about growth in customers, planning workforce levels, 
scheduling and purchases) and b) a time horizon for a forecast  
(seconds, hours, days, months, quarters or years).  

B. Technique Selection: Based on determining the forecast 
horizon and purpose of requestor, the analyst select an 
appropriate technique (e.g., moving averages with exponential 
smoothing for short-term forecasts and trend equations for 
long-term forecasts). Often, the analyst uses more than one 
forecasting technique to obtain independent forecasts. If 

selected techniques produce approximately the same 
precision, this would give increased confidence in the results; 
disagreement among forecast indicates that analysts need to 
revisit the technique. 

C. Data Preparation: This is the most important and 
expensive forecasting step for analysts. Poor forecasts can 
result from inadequate data preparation. In this step, analysts 
sanitize  and preprocess the data to make it suitable for the 
forecasting techniques selected in the previous step.  During 
sanitation missing, ignorable, erroneous and empty 
performance counter variables are treated [2-4]. Counter data is 
missing when a performance monitor fails to record an instance 
of a performance counter. A counter is empty when a resource 
cannot start the require service. Analysts then preprocess the 
data using their custom written scripts to aggregate 
performance counters across several subsystems of a data 
center to derive customer-perceived counters [5] such as 
transaction response time, latency, user wait time, and 
perceived throughput. These values capture the user interaction 
with their system as their transaction/request/job flows through 
the various subsystems in a data center. Preprocessing also 
involves preparing the data in the format that is required by the 
selected forecast techniques. Therefore, analyst preprocess 
(i.e., extrapolate, scale and standardize) the data accordingly. 

D. Prepare Forecast: In this step, the analyst uses prepared 
time series training data and the selected forecast technique to 
create a forecast model that has minimum error rate, i.e., its 
predicted values are close to the actual time series value, 
without either underfitting or overfitting. Analyst tune the 
parameters of the forecast techniques several times to find the 
best form of the model that satisfies the requestor’s forecast 
objective. 

E. Monitor Forecast: This step is composed of two substeps: 
active and passive monitoring of the forecasts. In active 
monitoring, an analyst validates a forecast for a predetermined 
period of time before it is deployed in production or the model 
is handed over to the requester. The analyst verifies 
assumptions, compares the forecasted values (transaction 
volume, workload, or resource utilization of machines) to the 
actual observed values as they occur in the data center, and 
identify any external or internal event that affects the results of 
the forecast. Once the forecasting model is communicated to 
the requestor, a recurring monitoring checkpoint for the 
forecast is established (i.e., monthly, quarterly or every six 
months) to look for any evidence of significant variance 
between the actual and predicted results; identify deviation 
factors such as discontinuities. Any variance greater than the 

    

Fig. 1. Examples of discontinuities in performance counter 

 

Fig. 2.     Steps involved in a forecasting process 
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maximum is investigated and forecast model is either adjusted 
to accommodate the variance or retrained for the discontinuity.  

III. PROPOSED APPROACH 
In this section we present our proposal to overcome the 

challenges discussed in the previous section. Fig. 3 shows the 
major steps of our proposed approach. We detail the steps as 
follows: 

A. Data Preparation 

The performance logs obtained from the production 
environment (i.e., data center) do not suffice for direct analysis 
by our approach. Performance logs need to be filtered for 
noise, e.g., missing counter data or empty counter variables. To 
deal with this kind of problem (incomplete data), we employed 
list-wise deletion. If the ith observation for a counter ‘T’ is 
missing, list-wise deletion will delete the corresponding ith 

observation of all the counter variables. Partial empty counter 
variables and counter variables that have more than 2% of the 
missing data are automatically removed during the sanitization 
process. The logs also need to be prepared to make them 
suitable for the statistical technique employed by our approach, 
i.e., Principal Component Analysis (PCA). PCA is a maximum 
variance projection method [12]. Performance counters have 
different ranges of numerical values; they have different 
variance. PCA identifies those variables that have a large data 
spread (variance), ignoring variables with low variance [19]. 
To eliminate PCA bias towards those variables with a larger 
variance, we standardized the performance counters via Unit 
Variance scaling, i.e., by dividing the observations of each 
counter variable by the variable’s standard deviation. Scaled 
performance counter data are then further mean centered to 
reduce the risk of collinearity. With mean-centering, the 
average value of each performance counter variable is 
calculated then subtracted from its respective counter data. 
Each scaled variable then has an equal (unit) variance, i.e., 
each variable has a mean of 0 and Standard deviation of 1.  

B. Performance Counter Selection 

The performance logs obtained from the production 
environment consists of thousands of performance counters. 
Many of the performance counters are either invariants such as 
‘Component Uptime’, ‘Component Last Failure’  or  are 
configuration constants, such as ‘No of DB Connections 
Allowed”, ‘Message Queue Length’ and ‘Total Component 
Memory’. These counters captures little variance and the values 
of such performance counters seldom change or correlate to 
dependent variable such as workload volume. These variables 
are of little help to analysts in detecting discontinuities. For 
example, Fig. 4 shows a few of the performance counters for 
one of the CPU-intensive performance test experiments 

conducted (explained in section IV). During the course of the 
performance test, a few anomalies and discontinuities are 
injected and performance counters across the testbed are 
captured in a performance log. Among them, Fig. 4 (a) is a plot 
of a webserver’s ‘ CPU utilization’ counter that does reflect all 
the injected anomalies (marked with circles in the figure) and 
discontinuities (marked with triangles). Whereas, the values of 
the database servers % CPU utilization’ performance counter 
shown in   Fig. 4 (b)  shows the injected anomalies, but 
injected discontinuities are not clearly visible. Fig. 4 (c) is ‘ 
Disk idle time’ counter of a database server. Its values neither 
react to any injected anomaly nor do the values reflect the 
injected discontinuities. Fig. 4 (d) is ‘User’s thread pool’ 
performance counter for the load generator and is a semi-
invariant, i.e., its values only change during the course of 
performance test,  when the workload intensity is increased or 
decreased. The counter is able to capture the injected 
discontinuity, but will fail to capture other types of 
discontinuities arising due to the changes made to the 
infrastructure. Moreover, the counter fails to capture any 
injected anomaly. A naïve way is to apply our proposed 
discontinuity identification technique across all the 
performance counters. However, using the techniques on all 
the counters will also increase detection of false positive 
discontinuities (such as the result shown in Figure 4 (b and c)  
for applying the technique on % CPU Utilization’ and ‘ Disk 
Idle Time’ counters) to analysts, thereby wasting their time in 
inspecting them. We use a robust and scalable statistical 
technique i.e., Principal Component Analysis (PCA) [22] to 
identify a few of the performance counter that capture the 
maximum variation of the collected data and have the potential 
to capture discontinuities in their time series counter values.  

We choose PCA due to a) our previous success in using it 
with performance data of a large-scale system and b) its 
superior performance in identifying performance counters that 
are sensitive to minute changes in both workload and 
environment as compared to many other supervised and 
unsupervised machine learning techniques [6]. We provide an 
overview of the PCA based performance counter selection 
technique in this paper. Further details are discussed in our 
previous work [7]. Basically, the high level goal of using PCA 
in our context is the same as using clustering: selecting the 
least correlated subset of performance counters that can still 
explain the maximum variations in the data, thereby 
eliminating performance counters capturing little variance such 
as invariants and configurations related performance counters. 
The performance counters identified by PCA approach are 
potentially good candidates for detecting any occurring 
discontinuities. These performance counters are fed into the 
next step of our approach to first detect the presence of 
anomalies and then to identify discontinuities among them, if 
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any exist. 

C. Anomaly Detection 

Any attempt to identify what constitutes anomalous data 
encounters both the difficulty of trying to categorize a very 
diverse set of unexpected patterns in data according to one or 
more common characteristics and the difficulty of choosing 
thresholds that realistically differentiate between normal 
variance in legitimate data, and unexpected potentially 
anomalous patterns in that same data.  Borderline cases may be 
somewhat arbitrarily labelled as either anomalous, or not 
anomalous, with such arbitrary labelling potentially having a 
significant impact on subsequent prediction. 

Some algorithms, such as regression, attempt to predict 
future results from only data seen to date while others (such as 
Fast Fourier Transform analysis) [35, 36] seek patterns within 
training data, so as to predict future results. When seeking to 
detect anomalies in recent performance data for which future 
performance data is currently unavailable, we are unable to 
distinguish between a temporary anomaly and a longer term 
discontinuity.  However, we can track the running mean and 
variance within the observed data, and presume that observed 
values exceeding some multiple of the variance from the mean, 
or recent windowed data failing the t-test is anomalous.   

When working with training data, we discover 
discontinuities by presuming that discontinuities cannot be well 
modelled by a low order polynomial function. Given a 
performance counter time series data {v[t]}, we approximate 
the series by the quadratic function f(t) = c+bt+at2 that 
minimizes the least squared error (LSE).  We presume that 
series containing sudden dramatic changes, anomalies, or 
discontinuities will not be fit as well by this approximation and 
so have a larger LSE.   

To discover exactly where difficulties arise in fitting this 
model to the performance counter data, we begin by modelling 
the performance counter’s n data points as n consecutive 
quadratics fi having coefficients {c = v[ti], a = b = 0} and 
consequently LSE=0.  A greedy algorithm selectively replaces 
pairs of consecutive quadratics modelling adjacent data by a 
single quadratic until our performance counter time series is 
modelled by a single quadratic.   

At each step selection is chosen so that the increase in the 
total LSE is minimized.  Replacements with the same increase 
in LSE are chosen by giving priority to those new quadratics 
having smaller |ai|, then |bi|, and then if necessary modelling 
shorter subsequences. At each step the two data points that 
cease to be at the end of a subsequence when subsequences are 
merged have a cost associated with them.  This cost is simply 
the total increase in the LSE of the subsequence they formally 
belonged to when this subsequence is modelled by a quadratic 
spanning the longer now combined pair of subsequences.   
Inputs can be standardized (having mean µ=0, and variance 
Ϭ2=1) if cost on different inputs must be comparable.    

 Cost reflects the poor fit when unifying consecutive 
subsequences at a point under a common quadratic model. 
Since the total LSE is related to the length of the subsequence 
unified, cost is also influenced by reluctance of our greedy 
algorithm to undertake early unification at a point.  Largest 

costs thus suggest positions where the most egregious 
anomalies/discontinuities occur as shown in Fig 5 (c, b). Using 
dynamic programming optimal quadratic coefficients can be 
computed at each step in constant time.  Since i!!!

!!! = (n! −
n)/2  quadratics are computed, and following each 
computation a total LSE is then calculated on typically far 
fewer than n values, the algorithm runs in at worst Ο(n!).  The 
biggest problem with this algorithm is detecting and coping 
with singularities when computing quadratic coefficients. 
Internally 128 bit doubles are used; decrease in LSE (which 
should never in theory happen) used to detect floating point 
under/overflow, and linear fit preferred whenever it has a 
smaller LSE.  

D. Discontinuity Identification 

This step of our approach filters out discontinuities among 
all anomalies identified by the previous step of our approach 
and is composed of the following sub-steps 

1) Distribution Comparison: After the anomaly 
transition period has passed, the value of the performance 
counters returns back to its equilibrium state, i.e., stable state 
with respect to the workload. In the event of a discontinuity, 
the increase or decrease in the value of a performance counter 
persists after the transition period 𝑡 as shown in Fig.1 (a, b). 
This sub-step of our approach compares the distribution of a 
performance counter before and after the anomaly transition 
period. We use Wilcoxon rank-sum test [8] to compare the two 
distributions. We choose this test because it is non-parametric 
and does not require the data to be normally distributed. We 
conducted Shapiro–Wilk test of normality [3] to confirm that 
our data obtained from both industrial and an open source 
system (discussed in section IV) is not normally distributed.  
Wilcoxon rank-sum test at the significance level of 1% (i.e., 
0.01), ρ-value < 0.001 indicates that the null hypothesis (H0) 
(i.e., the two distributions are same) is rejected; we can 
conclude the presence of a discontinuity.  

2) The Effect Size for Measuring Discontinuity: When an 
anomaly transition period is long, i.e., spans over a few weeks 
(e.g., slow diffusion of a memory leak) to a month (when a 
recently added feature is removed or a hotfix is rolled back 
when a corresponding patch is ready), the value of 
performance counter will return to the equilibrium state 
reflecting the normal behavior of the system under 
corresponding load. However, there will be slight differences 
between the counter distribution before and after the long 
transition period either due to carry-over effect of an anomaly 
or due to counter extrapolation rate, such as monthly growth in 
workload volume and CPU consumption. In practice, analysts 
do not consider such a minute difference between the 
distribution as a disconnect, despite the difference being 
statistically significant.  

We measure the effect sizes of the difference in the 
distribution of performance counter values before and after an 
anomaly, in order to confirm discontinuities. Unlike Wilcoxon 
rank-sum test, which only tell us if the difference of the mean 
between two populations are statically significant, effect size 
quantifies the difference between two populations. Research 
has shown that reporting only the statistical significance may 
lead to erroneous results [9] (i.e., if the sample size is very 



 

large, p-value can be small even if the difference is trivial). We 
use Cohen’s d to quantify the effect [9]. Cohen’s d measure the 
effect size statically, and had been used in prior engineering 
studies [9, 10]. Cohen’s d is defined as: 

𝐶𝑜ℎ𝑒𝑛!𝑠  𝑑 = !!!!!
!

                                 (1) 
Where x! and x! are the means of two populations, and s is 

the pooled standard deviation [11]. The strength of the effects 
and the corresponding ranges of Cohen’s d value are [12]: 

𝑒𝑓𝑓𝑒𝑐𝑡  𝑠𝑖𝑧𝑒 =

𝑡𝑟𝑖𝑣𝑖𝑎𝑙
𝑠𝑚𝑎𝑙𝑙
𝑚𝑒𝑑𝑖𝑢𝑚
𝑙𝑎𝑟𝑔𝑒  

𝑖𝑓  𝐶𝑜ℎ𝑒𝑛!𝑠  𝑑 ≤ 0.2

                        
𝑖𝑓  0.2 < 𝐶𝑜ℎ𝑒𝑛′𝑠  𝑑 ≤ 0.5
𝑖𝑓  0.5 < 𝐶𝑜ℎ𝑒𝑛′𝑠  𝑑 ≤ 0.8
𝑖𝑓  0.8 < 𝐶𝑜ℎ𝑒𝑛!𝑠  𝑑

  

 Effect size acts as a tunable threshold to reduce false 
positive identification of discontinuity by our approach. 
Analysts (based on their domain trends and required 
granularity to train their forecast models) can set the effect size 
beyond which (despite being statistically significant), the 
differences between a performance counter’s distribution, 
before and after the anomaly transition period is considered as 
a discontinuity. 

IV. CASE STUDY 
The main goal of this case study is to investigate the 

effectiveness of our proposed approach for identifying 
discontinuities in performance data.  
 

RQ 1.   How effective is our approach in identifying 
discontinuities in performance data? 

Motivation: A methodology with lower recall won't be 
adopted in practice since it fails to identify many of the 
existing discontinuities in performance data. An approach that 
produces results with high recall and low precision is not 

useful either since it floods the performance analysts with too 
many false positives. An ideal approach should identify 
minimal and correct set of discontinuities in performance data. 
We evaluated the performance of our approach using precision, 
recall and F-measure. 

A. Subject of Study and Environmental Setup 

TABLE III lists the systems studied in this paper. In this 
section, we describe the environment setup for these systems. 

The Industrial System: A data center  provided us with the 
production performance logs of their data center spanning over 
terabytes (TB). The log contained a wealth of performance 
counters obtained from 5,500 grids hosting 279 companies 
over the period of 7 years. The peak number of servers running 
across grids in any one hour is 12,088. Maximum CPUs on a 
server is 32. 

The Open Source System: The second system under study 
(SUS) is Dell DVD Store (DS2) application [13], which is an 
open source prototype of an online e-commerce website. It is 
designed for benchmarking Dell hardware. It includes basic 
ecommerce functionalities such as user registrations, user 
login, product search and purchase. DS2 consists of a back-end 
database component, a web application component, and a 
driver program (load generator). DS2 has multiple distributions 
to support different languages such as PHP, JSP, and ASP and 
databases such as MySQL, Microsoft SQL server, and Oracle. 
In this case study, we use the JSP distribution and a MySQL 
database(s). The JSP code runs in a Tomcat container. Our load 
consists of a mix of transactions, including user registration, 
product search and purchases. The configuration of our DS2 
load generator for the baseline performance load in our 
experiments is listed in Table I, to enable the replication of our 
experiments. 

Simulation:  Practitioner of the data center provided us 
with an excel sheet that had synthetic data (representation of a 
performance log) along with manufactured discontinuities 
generated using statistical equations and formulas. However, 
they did not communicate the occurrence of manufactured 
discontinuities in the data to us. 

B. Fault Injection 

To study our approach on realistic situations, we must 
evaluate them in the presence of representative faults (i.e., 
anomalies and discontinuities). To do so, we first need to 
choose the category of faults, e.g., software failures, hardware 
failures and operator/human errors. Pertet et al. [14] performed 
a study on performance degradation and failure occurrences in 
an enterprise web service system and concluded that 80% of 
the performance anomalies in large software systems are due to 
software inconsistencies and human errors. Therefore, in this 
paper, we injected anomalies and discontinuities along these 
two categories. Table II lists the different anomalies and 
discontinuities for our performance test experiments. Below, 
we explain the rationale of choosing the anomalies and 
discontinuities for our experiments  

1) Anomalies 

Memory Stress: According to BlackBerry and Mozilla, the 
most common anomaly occurring in the field is related to 

TABLE I.  BASELINE PERFORMANCE TEST 
Parameter Value 

Test Duration 8 hours 
Number of driver (load generator) threads 100 
Start Request rate (load ramp-up rate) 5 
Think time (time to complete and order) 30 seconds 
Database size 100 GB 
Percentage of new customers 20% 
Average number of searches per order 5 
Average number of items returned in each search 3 
Average number of items per order 20 

TABLE II.  FAULT INJECTION IN OUR EXPERIMENTS 
No Faults Type Experiment 
1 CPU Stress Anomaly 1 
2 Transient Memory Stress Anomaly 2 
3 Interfering Workload  Anomaly 3 
4 Workload as Multiplicative Factor Discontinuity 1 
5 Change in Transaction Pattern Discontinuity 2 
6 Hardware Upgrade Discontinuity 3 

TABLE III.  THE SUBJECT OF THE STUDY 
No System Domain Type of data 
1 Industrial System Cloud Provider Production Data 

2 Open Source E-Commerce Experiments with  an open 
source benchmark application 

3 Simulation Cloud Synthetic Data using statistical 
equations 
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Transient memory issues [30-31].  Transient memory issues 
(memory spikes) are large increases in memory usage over a 
relatively short period of time. Therefore, we choose to inject 
Transient memory anomalies as one of our experiment. 

CPU Stress: Large enterprises report that periodic CPU 
saturation is one of the fundamental field problems [15]. CPU 
saturation causes anomalous behavior in applications, i.e., not 
responding fast enough and shutting down many of their 
features. CPU anomalies can even cause system/applications to 
crash or hang under heavy load. The CPU saturation can be 
due to an unplanned increase in the workload volume. It can 
also be due to software regression bug, i.e., due to an updated 
feature of an application in which developers forget to remove 
the additional executed logic as part of their debugging activity 
[16]. Even a small set of additional calculations added to a part 
of the source code which is executed frequently can produce a 
dramatic increase in CPU usage. 

Interfering Workload: Interfering workload anomalies are the 
major cause of performance degradation in data centers (DC) 
[17]. Interfering workload anomalies results from competition 
for resources and occur due to various reasons; as simple as un-
announced maintenance on a cluster (e.g., security scans), or a 
storage array that is performing a system operation such as 
replication and RAID construction.  

2) Discontinuities 

The analyst of a data center indicated what they considered 
the most common reasons for discontinuities. We injected the 
three common discontinuities described below into our 
performance test:  

Workload as Multiplicative Factor:  This to represents 
increased business due to promotions, new products, mergers 
& acquisitions of other smaller companies. 

Change in Transaction Pattern:   A change in transaction 
pattern can cause discontinuities in both resource and SLA 

counters such as response time, throughput and latency. A 
transaction is composed of multiple events that execute in a 
sequence and are called sequence events [18]. For example, 
when a user buying an item from Amazon, the user needs to 
select the items (i.e., selection event S1) first before he can 
checkout (i.e., check out event C1) Moreover, he needs to put 
the selected items in the shopping cart (i.e., update cart event 
(U1) before checkout too. Similarly, shipping (i.e., shipping 
event SH1) cannot be performed before a successful check out 
to complete a transaction T1. Each sequence event in a 
transaction takes some amount of time and system resources. A 
new built of an application or an enterprise software deployed 
in a data center can either affect the future response time of the 
transaction (i.e., improved or deteriorate response time) or 
resource consumption.  

Hardware and Software Upgrade: Cloud computing and 
data center consolidation require periodic network upgrades 
because they drive more data through the same amount of 
hardware. For example, a virtualized server holds multiple 
virtual machines, but still only has a single network port. This 
means that the bandwidth is shared between all of the VMs. 
Network upgrades can resolve these issues by adding more 
data throughput or optimizing existing infrastructure to meet 
current needs. Such hardware upgrades are typical causes of 
performance data discontinuity.  

C. Experiment Design 

We designed five experiments to answer our research 
question. We used the framework of Thakkar et al. [15] to 
automate the performance test and to ensure that the 
environment remains constant throughout the experiments. We 
used Thakkar framework due to its simplicity and its previous 
success in practical performance testing [15].  Except for 
experiment 5, which consisted of production data obtained 
from the industrial partner and experiment 4, which consisted 
of synthesizing data using mathematical equations, all other 
performance test experiments are repeated > 30 times (as 

    

Fig. 4. Performance counters reflecting injcted anomalies and discontinuities Legend:X-axis:Time; Y-axis:Resource utilization;   : Anomaly;     :Discontinuity 

    

Fig. 5. Anomalies detected by our proposed approach   Legend: X-axis: Time; Y-axis: cost 
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suggested by Georges et al.[19]) to ensure that measure of 
variation is not misleading or incorrect, to overcome 
performance counters instability during the experiments, and to 
ensure consistency among our findings. The ramp-up and 
ramp-down (warm up and cool down) [5, 7] periods, usually 
spanning over 15 minutes were excluded from our analysis, as 
the system is usually not stable during these periods during 
performance tests. We used windows ‘perfmon’ [20] tool to 
collect the performance data after every 15 seconds (sampling 
interval) across all the eight machines. The sampling interval is 
set to 15 seconds to match the sampling interval of production 
performance data. All the performance tests are eight hours 
long. Each performance test has 4,242,400 observations from 
two hundred and twenty performance samples of counter 
values. We injected three anomalies and three discontinuities in 
all our experiments except experiment 5, which consist of 
production data. We now detail the settings of each experiment 
for faults listed in TABLE II.   

Experiment 1 (CPU Stress & Workload as Multiplicative 
Factor): For experiment 1, we injects the anomalies in DS2 
application by triggering resource exhaustion. We ran a 
performance test with the baseline workload listed in TABLE 
I. Then, we slowed down the CPU of the web server using a 
CPU stress tool, known as winThrottle [21]. We choose 
winThrottle over other CPU stress tools because it is an open 
source tool and can use features in system hardware that 
directly modify the CPU clock speed, rather than using 
software “delay loops” or “HLT instructions” to slow down the 
machine. We injected discontinuities by triggering a system 
overload, the second most common failure trigger identified by 
Pretet and the most common cause of discontinuity pointed out 
by practitioners. This experiment keeps the workload-mix 
constant and increases the execution rate of our workload over 
a significant period of time to 8X, i.e., eight times as the 
baseline workload configuration. 

 Experiment 2 (Memory Stress & Change in Transaction 
Pattern ): For experiment 2, we  conducted a performance test 
with the same workload as the baseline load listed in TABLE 
II, but injected a memory bug into the webserver using  a 
customized open-source memory stress tool called EatMem 
[22]. The tool allocates a random amount of available  memory 
at recurring intervals to mimic a Transient Memory Spike. We 
also injected discontinuities in experiment 2 using change in 
transaction pattern. Accessing I/O storage devices, such as hard 
drives, are usually among the slowest part of a transaction. 
Changes to I/O operation in an execution can even cause 
performance regression (i.e., performance discontinuity) [16]. 
Adding log statements to execution is a common mistake [23]. 
Log statements are usually required when implementing a new 
feature. There is a tendency to leave the log statement behind 
in the source code when a change is finished. We increased the 
logging for the most frequently accessed source code area in 
Dell DVD Store, i.e., ‘Item Selection’ execution event thereby 
causing discontinuity. In experiment 2, we have to stop the 
load generator several times to enable increased levels of 
logging for the Dell DVD store application. However, the 
‘Perfmon’ logs the performance counters for the entire duration 
of the experiment, i.e. eight hours. 

Experiment 3 (Interfering Workload & Hardware 
Upgrade): This experiment aims to trigger interfering workload 
anomaly mostly due to procedural errors such as planning a 
security scan at the time when peak workload is expected or 
due to unconstrained activities such as RAID construction, 
self-cleanup activities of mail stores and storage replications.   
We created  an interfering background workload anomaly 
mimicking a situation where the administrator schedules an 
antivirus scan that conflicts with the timing of the performance 
test. We scanned one of the web server machines with an 
antivirus every 50 minutes for  10 minutes over the course of 
eight hours to perturb the main workload. To mimic the 
discontinuities arising from maintenance activities such as 
hardware upgrades in experiment 3, we first set an ‘Affinity’ 
[24] to use only two CPUs for MySQL process on all three 
database servers. Periodically, for each database server, we 
removed the affinity rules for the MySQL process to reflect 
hardware update, i.e., addition of CPUs. 

Experiment 4 (Synthetic Data): It is hard to produce cyclic 
workload in a lab environment, i.e., performance counter 
values that respond in a continuous wavelength pattern (i.e., 
period formation of trough and crest) to cyclic workload 
stimuli. For example, Microsoft exchange server, running 
MMB3 workload [25], results in CPU and DISK IOPS to 
follow wavelength patters as shown in Fig. 2. (c). 
Mathematical formulas in Excel are used to generate cyclic 
performance countervalues (e.g., CPU utilization with respect 
to the transaction volume) and manufactured discontinuities 
(using statistical equations) were used to cause irregularities in 
the data. 

Experiment 5 (Production logs): This experiment was 
conducted on the production data. The analyst of a data center 
gave us performance logs spanning over seven years without 
revealing the discontinuities. In particular, analysts were 
interested to know how our approach performs on two of the 
specific clients' data which they had already verified for the 
presence of discontinuities. 

D.  Measure the Effectiveness of Our Approach 

To evaluate the effectiveness of our approaches, we use the 
following measures: Precision, Recall and F-Measure. 
Precision is the ratio between correctly identified 
discontinuities and predicted discontinuities in a performance 
data. Recall is defined as the ratio between the number of 
correctly identified discontinuities and the number of actual 
discontinuities present in performance data.  F-measure is 
defined as a harmonic means of precision and recall [26].  F- 
Measure = (𝛼 + 1) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝛼 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑅𝑒𝑐𝑎𝑙𝑙)  . The value of alpha (𝛼) ranges between 0 and infinity 
to give varying weights for recall and precision. For example, 
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in this paper to indicate that recall is as important as precision,  
alpha has a value of 1.0. For All our experiments (1 to 3), we 
divided the performance test into equal time intervals from t1 
to t10 as shown in Fig.6.  For each performance experiment (1 
to 3) corresponding anomaly is injected during interval t1, t2, t8, 
t9 and t10 and discontinuities are injected within time interval t3, 

t4, t5, t6 and t7. We also logged the exact time of all the fault 
injections in a test. We now use Fig.6 as an example to explain 
how we measure the precision and recall of our proposed 
approach. An ideal approach should only report the intervals 
during which the discontinuities occurred, i.e., O= {t3, t4, t5, t6, 
t7}. We applied our    

TABLE IV.  THE EFFECTIVENESS OF THE PROPOSED DISCONTINUITY IDENTIFICATION APPORACH 

Exp Id 

Cohen’s d Effect Size 
Counter Size Trivial Small Medium Large 

Prec Recall F-Mes Prec Recall F-Mes Prec Recall F-Mes Prec Recall F-Mes Selected Total 
1 0.50 0.80 0.68 0.66 1 0.80 1.00 1.00 1.00 1.00 1.00 1.00 20 220 
2 0.60 0.90 0.72 0.8 1 0.88 1.00 1.00 1.00 1.00 1.00 1.00 20 220 
3 0.80 0.80 0.80 0.91 0.88 0.95 0.95 0.88 0.91 1.00 1.00 1.00 20 220 
4 0.70 0.90 0.78 1.00 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00 15 30 
5 0.50 0.60 0.54 0.70 0.69 0.69 0.92 0.92 0.92 0.92 0.87 0.90 20 1256 

Average 0.62 0.8 0.704 0.814 0.904 0.85 0.97 0.96 0.96 0.98 0.97 0.98 − − 
approach on the three performance counters CPU, Disk, and 
Latency obtained from the experiment performed and it  
collect-ively predicted (among unique time intervals shown in 
red) discontinuities P = {t1, t2, t3, t4}. Based on these definitions 
we define: Recall = 𝑃 ∩ 𝑂 𝑂  and Precision = 𝑃 ∩ 𝑂 𝑃 . 
Therefore, in the above example, Recall = 2/5 = 0.4, Precision 
= 2/4= 0.5, and F-Measure = 0.44. 

E. Case Study Results 

We now report our findings. The Table IV shows, under 
varying effect size, the effectiveness of our proposed approach. 
The results are listed using the definition of our performance 
measure (i.e., Precision, Recall and F-measure) for all the case 
study experiments. For the first three experiments, the values 
reported in Table IV are the averages of thirty runs per 
experiment. The ‘Total’ counters size represents the number of 
performance counters harvested from the system-under-test.  
The ‘selected’ counter refers to number of performance 
counters selected among the pool of Topk counters 
recommended by our PCA approach that have higher 
likelihood of revealing discontinuities (if any occurred) . The 
main constraint on the number of Topk counters come from 
practicality. The performance analysts of our industrial partner 
advised us that they consider 20 performance counters as the 
maximum that are manageable. Any increase in the number of 
performance counters beyond 20 negatively affects the human 
capability to effectively examine and confirm the underlying 
discontinuities; or to understand the root-cause of an observed 
discontinuity so as to adjust the parameters of forecast models 
accordingly.  

Overall, our approach has a higher average recall in 
comparison to its precision. For experiments 1 to 4, using large 
effect size, the approach performance is ideal because a) we 
had limited types of discontinuities to inject, and b) 
discontinuities variations (i.e., abrupt change (jump) in counter 
values) are limited as compared to what is observed in the 
production environment. In experiment 5 (production data), our 
approach performed the best with an effect size set to 
‘Medium’. Our approach is very sensitive to the variation in 
the performance data therefore; the efficiency of our approach 
suffers when effect size (i.e., sensitivity) is set to ‘trivial’; our 
approach achieved the minimum precision of 0.50. We 
investigated the rationale behind the poor performance of the 
approach for ‘Trivial effect size’. We found that under extreme 
load such as in experiment 1, where CPU anomaly and 8X 

workload discontinuity is injected, it took a long time for CPU 
counter to stabilize and return to its normal state, perturbing the 
equilibrium of counter’s distribution till the next injected fault. 
The proposed technique when comparing the distribution of ‘% 
CPU Utilization’ before and after the transition period of 
anomaly (i.e., injected fault), the technique picked up even this 
minute variation (𝐶𝑜ℎ𝑒𝑛!𝑠  𝑑 ≤ 0.2) due to carryover effect 
and marked it as a discontinuity. 

 Similarly, for experiment 1, we also found that under 
extreme CPU stress, the database server refused connection 
from all of the four webservers in the system under test. This is 
the default behaviour of MYSQL server under extreme stress. 
The webservers facing heavy workload volume (i.e., from load 
generators), a) started appending all the intermediate 
transaction to the disk on priority basis, so that the transaction 
are not lost and are  routed to the database server as soon as the 
connection is established with it. This caused the values of 
“Disk-IOPS” to rise considerably higher and b) reattempted to 
establish connection with MYSQL server every 10 seconds, 
causing higher than normal variation in the value of the 
‘NIC_controller_packet sent’ counter. Moreover, due to the 
MYSQL server under stress, the transaction response time also 
increased. All these unexpected variations in the performance 
counter data are perceived as discontinuities by our proposed 
approach when sensitivity parameter is set too low, i.e. 
‘Trivial’. Our approach performed well when the effect size is 
set to higher levels. This is because being the carry-over effect 
of anomalies, and minute external variation such as linear 
growth in counter value or its value drift over time is filtered.  

All the identified discontinuities (especially for the logs of 
two customers) were verified by practitioners. Our approach 
performed up to the satisfaction of the practitioners. For 
experiment 5, with effect size set to ‘Small’, the approach was 
able to identify most of the discontinuities with precision and 
recall of 0.70 and 0.69. With effect size set to ‘Medium’, the 
approach performed better, i.e., achieved with excellent 
balance of precision and recall (i.e., 0.92, 0.92).  With effect 
size set to ‘Large’, the recall of the approach suffered no 
change in its precision. 

V. LIMITATION AND THREATS TO VALIDITY 
Sensitivity: We can tune the sensitivity of our approach to 

uncover discontinuities in performance data  by adjusting 
effect size. Though using large effect size reduces false alarms,  



 

this may result in an analyst overlooking significant 
discontinuities. This is a general problem and an automated 
technique, cannot generally decide whether an identified 
discontinuity is important or is noise. Analysts have to conduct 
multiple experiments with different effect size to determine the 
optimal threshold for the performance data relevant to a 
project, client, or his own environment. 

Distinguishability: Our proposed technique cannot 
distinguish between overlapping discontinuities, i.e., change is 
counter’s behaviour due to multiple factors over same period of 
time. Moreover, the proposed technique only identifies the 
discontinuity. The analyst has to manually inspect the 
discontinuity and take actions accordingly  

External Validity: We used one large industrial and one 
open source benchmark system to reduce the threat to validity. 
However, the proposed technique cannot be generalized to 
other domains such as sensory data arising from network traffic 
and security monitoring requiring high confidence and 
reliability in the recommendations. This is due to the fact that 
there is no guarantee that direction of maximum variance (i.e., 
the use of PCA) will discover good performance counters for 
identifying discontinuities. A large anomaly (such as in 
network traffic) may inadvertently pollute the normal 
subspace, thereby skewing the assumption that large variances 
always have important dynamics. Generalizing to any other 
systems, especially in other domains requires the replication of 
our approach. 

Construct Validity: Since our proposed approach is 
evaluated, in three out of five experiments, based on injected 
faults, we tried to reduce the construct validity threat by being 
systematic with the fault injection process. Despite our careful 
fault injection mechanism, the type of the injected faults may 
not be fully representative or real faults. 

Internal Validity: This study required various sets of 
configurations (test environment), implementations (PCA), and 
data analysis (data handling and statistical analysis).  
Therefore, to reduce the internal validity threat we used 
existing frameworks (e.g., Thakkar framework for automating 
the performance test executions) and packages (e.g., R 
statistics packages for PCA implementation study) 

Conclusion Validity: Experiments 1-3 are executed 30 
times each and the average of the results is taken for each 
effect size. However, the differences among the results 
produced by our approach might be attributable to the random 
nature of the experiments. We plan to extend the study with 
longer (i.e., 36 hours) and more runs per experiment so that 
statistical significant test can be meaningfully applicable.   

VI. RELATED WORK 
Detecting anomalies in an enterprise system is not a new 

problem. However, there is little work done in identifying and 
diagnosing anomalies in large scales systems using such 
performance data as, console logs, performance counter logs 
and executions logs. Most of the work in the literature is 
divided into two major dimensions, i.e., pre and post 
deployment anomaly detection. 

A. Pre-deployment Anomaly Detection in Large-Scale 
System 

 The focus work along this dimension is to help analysts to 
identify and diagnose anomalies in the system early before they 
become critical field problems. Closest work to ours is the 
work done by Foo [4, 27] and Naguyen [16, 28]. Both use 
performance counters to automate the analysis of performance 
test an automatically identify performance anomalies in the 
system. Foo et al. [4, 27] calculate performance signatures 
from previous executions and use them as a baseline to 
compare against performance signatures of new executions. 
This approach is close to regression testing as it validates if 
anomalies are introduced into newer software versions. They, 
however, only do comparative analysis, which only provides a 
Yes/No answer on performance anomalies. In contrast, our 
approach can pinpoint the time duration at which the anomaly 
and discontinuity occurs and for how long it prevails, i.e., its 
transition period. Nguyen [16, 28] used a quality control 
technique called control charts to flag the anomalies in the 
performance counters using upper and lower bound limits. 
Their technique requires deep understanding of the domain to 
create control limit of performance counters. The variation of 
the counter values within the limit is considered as normal 
variation. In contrast, our approach use effect size as a tunable 
threshold to identify discontinuities, and does not require an 
analysts to have explicit knowledge about the acceptable limits 
of all the performance counters values. Unlike our work, Jiang 
[3] relies on execution logs that capture detailed information. 
However, such logs are vendor and application specific. This 
means, that different subsystems in a large-scale system (e.g. 
web servers, databases, and mail servers) produce a variety of 
execution logs, each with different levels of information and 
formats. Whereas, the performance counters data, provide a 
greater level of unification across subsystems and systems. 
Malik et al. [6, 29] have used principal component analysis 
(PCA) to generate performance signatures for each component 
using performance counters captured during load test. They 
assess the pair-wise correlations between the performance 
signatures of a performance test and a baseline test to identify 
performance anomalies and deviations. However, it’s hard to 
find baselines in rapidly evolving large-scale systems. 

B. Post-deployment Anomaly Detection in Large-Scale 
System 

The work in this dimension aim to help analyst identify 
anomalies in production environment, i.e., once a system or 
and enterprise application is deployed. Syers et al. [30, 31] 
proposed an approach to identify performance anomalies and 
deviation in thread pool using performance counters. Their 
approach is limited to the detection memory related 
performance anomalies in enterprise systems (e.g., memory 
leaks, memory spikes and memory blots). Attariyan et al. [11] 
proposed a performance summarization approach for 
identifying root causes of performance anomalies based on 
human errors, such as misconfigurations. They used dynamic 
binary instrumentation to monitor an application as it executes 
instead of execution logs or performance counters. However, 
their techniques only focus on misconfigurations and do not 
help to find anomalies.[32-34]. Finally, there are other 
approaches [27, 29] that use annotated software models to 



 

detect performance anomalies [30]. These approaches, 
however, use software model simulations and not real 
production software. 

VII. CONCLUSION AND FUTUREWORK 
The growth in cloud environments and virtualization has 

increased the need for the forecasting techniques to better 
satisfy the scalability, elasticity, and cost-effectiveness 
requirements of cloud environments. The accuracy of a 
forecasting technique depends of the merit of input data. 
Analysts spend considerable preparing the data in order to 
conduct a forecast. We propose a technique that helps analyst 
automatically identify discontinuities in the performance data. 
Discontinuity is a change in a time-series pattern that persists 
(but does not reoccur) since the measurement taken before the 
discontinuity may be irrelevant, or nearly so. Detecting 
discontinuities in performance data of a data center is 
important to improve the forecasts. If an analyst knows a 
discontinuity has occurred, the analyst may want to ignore the 
early data and base the forecast on the measurements taken 
after the discontinuity. Moreover, detecting a discontinuity 
provide analysts a reference point to retrain their forecasting 
models and make necessary adjustments. We show how simple 
statistical techniques can be used to identify discontinuities in 
large performance data. A large case study on an industrial 
system as well as a benchmark open source system provides 
empirical evidence of the ability of our approaches to uncover 
the discontinuities in performance data. In future, we will 
attempt to study and categorize discontinuities with that of the 
corresponding workloads.  
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