

Detecting Discontinuities in Large-Scale Systems
Haroon Malik, Ian J. Davis, Michael W. Godfrey

David R. Cheriton School of Computing
University of Waterloo, Ontario, Canada
{hmalik, ijdavis, migod}@uwaterloo.ca

Douglas Neuse, Serge Mankovskii
CA Labs, CA Technologies

{Douglas.Neuse, Serge.Mankovskii}@ca.com

Abstract—Cloud providers and data centers rely heavily on

forecasts to accurately predict future workload. This information
helps them in appropriate virtualization and cost-effective
provisioning of the infrastructure. The accuracy of a forecast
greatly depends upon the merit of performance data fed to the
underlying algorithms. One of the fundamental problems faced
by analysts in preparing data for use in forecasting is the timely
identification of data discontinuities. A discontinuity is an abrupt
change in a time-series pattern of a performance counter that
persists but does not recur. Analysts need to identify
discontinuities in performance data so that they can a) remove
the discontinuities from the data before building a forecast model
and b) retrain an existing forecast model on the performance
data from the point in time where a discontinuity occurred.
There exist several approaches and tools to help analysts identify
anomalies in performance data. However, there exists no
automated approach to assist data center operators in detecting
discontinuities in the first place. In this paper, we present and
evaluate our proposed approach to help data center analysts and
cloud providers automatically detect discontinuities. A case study
on the performance data obtained from a large cloud provider
and performance tests conducted using an open source
benchmark system show that our proposed approach provides on
average precision of 84% and recall 88%. The approach doesn't
require any domain knowledge to operate.

Keywords— Forecast; data center; anomaly; discontinuity

I. INTRODUCTION
To effectively run a data center, appropriate virtualization

and cost-effective provisioning of the infrastructure, with
respect to the type and size of the service requests (i.e., the
workload), needs to be implemented. Overestimating the
necessary infrastructure for a set of requested services in a
specified period leads to waste, under-utilization, and increased
costs. However, under-estimation of the future workload is also
unacceptable, since it degrades the quality of the service and
may lead to violations of client Service-Level Agreements
(SLAs). To ensure SLAs are met, while minimizing
infrastructure costs, data center operators need to know ahead
of time, (i.e., short and long-term forecasts) the expected
workload. The aim of the short-term forecast is to provide
accurate predictions of workloads in the near future, e.g., one
or two hours ahead, usually based on a week to a month of the
data center’s recent performance history. The data center
operators use the short-term forecasting for dynamic
provisioning and placement of tasks in a data center, especially
for load balancing to avoid performance bottlenecks. Accurate
short-term forecasting permits near-optimal provisioning, thus
improving usage of the available infrastructure. Long-term
forecasting of the workload is necessary for capacity planning
to ensure that the cloud infrastructure supports growth and

evolution of client requirements. To capture the seasonality
patterns, long-term forecasting requires the use of at least a
year of recent performance history from one or more data
centers to predict expected workloads. The accuracy of
forecasting results depends on the quality of the performance
data (i.e., performance counters; such as CPU utilization,
bandwidth consumption, network traffic and Disk IOPS) fed to
the forecasting algorithms, i.e., missing value imputation,
calculating and adjusting times stamp drifts of logged
performance data across hundreds of VMs, identification and
removal of outliers and anomalies and in cases, scaling and
standardizing the data to remove bias among performance
counters.

In a typical cloud environment, a large number of elements
(i.e., VMs, routers, chillers and sensors) continuously generate
large traces of performance data (terabytes (TB) in size) further
complicating the data preparation step. Hence, practitioners
and data scientists spend considerable time (e.g., up to 80%
[1]) in preparing data for their forecast algorithms. One of the
fundamental problems faced by analysts in preparing data for
long-term forecast is the identification and removal of data
discontinuities. To date, there does not exist any automated
approach to assist data center operators in detecting
discontinuities in the performance data. Data discontinuity is a
special kind of anomaly that differs from behavioral and
environmental anomalies, and must be addressed before
making a forecast. A behavioral anomaly is an inconsistent
behavior, when systems have been provisioned identically are
receiving similar traffic (i.e., though a load balancer). An
environmental anomaly results from lack of uniformity
between the servers in a data center (usually over time). For
example, even when the system is identically provisioned, drift
often happens during the course of normal operations.

A discontinuity is an abrupt change in a time-series pattern
that persists but does not reoccur, as shown in Fig. 1.
Examples include a) a significant change in a counter’s value
b) a significant change in the slope (rate of change) of the
counter’s value, c) a significant change in a period cycle or
amplitude or both. Discontinuities such as those shown in Fig.
1 do not occur instantaneously, but over a brief period called a
transition period. If an analyst recognizes that a discontinuity
has occurred, (s)he may want to ignore the early data and base
their forecast on the measurements taken after the
discontinuity. Moreover, detecting a discontinuity provide
analysts a reference point to retrain their forecasting models
and make necessary adjustments.

Therefore, analysts require automated techniques that can
identify discontinuities among thousands of performance
counters collected across hundreds of machines. Such

Determine
Purpose

Technique
Selection

Data
Preparation

Prepare
Forecast

Monitor
Forecast

Feedback Loop

techniques should be intelligent enough to distinguish
discontinuities from anomalous data that should be ignored or
removed within input data, such as irregularities in which a
few individual performance counter values deviate
significantly from the general pattern but do not persist;
seasonal variations and recurring patterns that should be
accommodated such as workload volumes that decrease each
weekend but return to normal on Monday, and observed
growth that should be suitably anticipated b) recurring patterns
such as exponential growth of workload, i.e., where the slope
of counter(s) changes smoothly ⎯ though perhaps rapidly ⎯
with time.

We identify the main contributions of this paper as:

1. We provide an overview of the entire forecasting
process for a typical data center.

2. We provide an accurate and novel approach for
identifying discontinuities in performance data.

3. To our knowledge, this is the largest study to date for
detecting discontinuities; we use performance data
from 5,000 machines over a span of seven years.

4. We empirically evaluated our proposed approach on
both the data obtained from a large cloud service
provider and performance experiments conducted
using an open-source benchmark system. We show
that our proposed approach can achieve up to 91%
average precision and 95% average recall.

Organization of the paper:
The rest of the paper is organized as follow. We describe a

typical forecasting process in section II. We then present our
proposed approach in section III, followed by a case study
setup along with case study findings in section IV. The
discussion of the findings of the case study is presented in
section V. We discuss limitations and threats to the validity of
our approach in section VI, followed by a description of related
work in section VII. Finally, we summarize our work and
sketch possible future research in Section VII.

II. STEPS INVOLVED IN FORCASTING

A. Determine Purpose: Initially a department, team or a
stockholder requests a forecast. Usually, a dedicated group or
team of analysts is responsible for handling the forecast
requisition. The analysts gather preliminary information from
the requestor, i.e., a) forecast purpose (e.g., operations are
interested to know expected workload volume on a daily to
weekly basis for load balancing and dynamic placement of
machines, whereas, marketing and sales are more concerned
about growth in customers, planning workforce levels,
scheduling and purchases) and b) a time horizon for a forecast
(seconds, hours, days, months, quarters or years).

B. Technique Selection: Based on determining the forecast
horizon and purpose of requestor, the analyst select an
appropriate technique (e.g., moving averages with exponential
smoothing for short-term forecasts and trend equations for
long-term forecasts). Often, the analyst uses more than one
forecasting technique to obtain independent forecasts. If

selected techniques produce approximately the same
precision, this would give increased confidence in the results;
disagreement among forecast indicates that analysts need to
revisit the technique.

C. Data Preparation: This is the most important and
expensive forecasting step for analysts. Poor forecasts can
result from inadequate data preparation. In this step, analysts
sanitize and preprocess the data to make it suitable for the
forecasting techniques selected in the previous step. During
sanitation missing, ignorable, erroneous and empty
performance counter variables are treated [2-4]. Counter data is
missing when a performance monitor fails to record an instance
of a performance counter. A counter is empty when a resource
cannot start the require service. Analysts then preprocess the
data using their custom written scripts to aggregate
performance counters across several subsystems of a data
center to derive customer-perceived counters [5] such as
transaction response time, latency, user wait time, and
perceived throughput. These values capture the user interaction
with their system as their transaction/request/job flows through
the various subsystems in a data center. Preprocessing also
involves preparing the data in the format that is required by the
selected forecast techniques. Therefore, analyst preprocess
(i.e., extrapolate, scale and standardize) the data accordingly.

D. Prepare Forecast: In this step, the analyst uses prepared
time series training data and the selected forecast technique to
create a forecast model that has minimum error rate, i.e., its
predicted values are close to the actual time series value,
without either underfitting or overfitting. Analyst tune the
parameters of the forecast techniques several times to find the
best form of the model that satisfies the requestor’s forecast
objective.

E. Monitor Forecast: This step is composed of two substeps:
active and passive monitoring of the forecasts. In active
monitoring, an analyst validates a forecast for a predetermined
period of time before it is deployed in production or the model
is handed over to the requester. The analyst verifies
assumptions, compares the forecasted values (transaction
volume, workload, or resource utilization of machines) to the
actual observed values as they occur in the data center, and
identify any external or internal event that affects the results of
the forecast. Once the forecasting model is communicated to
the requestor, a recurring monitoring checkpoint for the
forecast is established (i.e., monthly, quarterly or every six
months) to look for any evidence of significant variance
between the actual and predicted results; identify deviation
factors such as discontinuities. Any variance greater than the

Fig. 1. Examples of discontinuities in performance counter

Fig. 2. Steps involved in a forecasting process

(c)

Transition

Period

(d) (b) (a)

maximum is investigated and forecast model is either adjusted
to accommodate the variance or retrained for the discontinuity.

III. PROPOSED APPROACH
In this section we present our proposal to overcome the

challenges discussed in the previous section. Fig. 3 shows the
major steps of our proposed approach. We detail the steps as
follows:

A. Data Preparation

The performance logs obtained from the production
environment (i.e., data center) do not suffice for direct analysis
by our approach. Performance logs need to be filtered for
noise, e.g., missing counter data or empty counter variables. To
deal with this kind of problem (incomplete data), we employed
list-wise deletion. If the ith observation for a counter ‘T’ is
missing, list-wise deletion will delete the corresponding ith

observation of all the counter variables. Partial empty counter
variables and counter variables that have more than 2% of the
missing data are automatically removed during the sanitization
process. The logs also need to be prepared to make them
suitable for the statistical technique employed by our approach,
i.e., Principal Component Analysis (PCA). PCA is a maximum
variance projection method [12]. Performance counters have
different ranges of numerical values; they have different
variance. PCA identifies those variables that have a large data
spread (variance), ignoring variables with low variance [19].
To eliminate PCA bias towards those variables with a larger
variance, we standardized the performance counters via Unit
Variance scaling, i.e., by dividing the observations of each
counter variable by the variable’s standard deviation. Scaled
performance counter data are then further mean centered to
reduce the risk of collinearity. With mean-centering, the
average value of each performance counter variable is
calculated then subtracted from its respective counter data.
Each scaled variable then has an equal (unit) variance, i.e.,
each variable has a mean of 0 and Standard deviation of 1.

B. Performance Counter Selection

The performance logs obtained from the production
environment consists of thousands of performance counters.
Many of the performance counters are either invariants such as
‘Component Uptime’, ‘Component Last Failure’ or are
configuration constants, such as ‘No of DB Connections
Allowed”, ‘Message Queue Length’ and ‘Total Component
Memory’. These counters captures little variance and the values
of such performance counters seldom change or correlate to
dependent variable such as workload volume. These variables
are of little help to analysts in detecting discontinuities. For
example, Fig. 4 shows a few of the performance counters for
one of the CPU-intensive performance test experiments

conducted (explained in section IV). During the course of the
performance test, a few anomalies and discontinuities are
injected and performance counters across the testbed are
captured in a performance log. Among them, Fig. 4 (a) is a plot
of a webserver’s ‘ CPU utilization’ counter that does reflect all
the injected anomalies (marked with circles in the figure) and
discontinuities (marked with triangles). Whereas, the values of
the database servers % CPU utilization’ performance counter
shown in Fig. 4 (b) shows the injected anomalies, but
injected discontinuities are not clearly visible. Fig. 4 (c) is ‘
Disk idle time’ counter of a database server. Its values neither
react to any injected anomaly nor do the values reflect the
injected discontinuities. Fig. 4 (d) is ‘User’s thread pool’
performance counter for the load generator and is a semi-
invariant, i.e., its values only change during the course of
performance test, when the workload intensity is increased or
decreased. The counter is able to capture the injected
discontinuity, but will fail to capture other types of
discontinuities arising due to the changes made to the
infrastructure. Moreover, the counter fails to capture any
injected anomaly. A naïve way is to apply our proposed
discontinuity identification technique across all the
performance counters. However, using the techniques on all
the counters will also increase detection of false positive
discontinuities (such as the result shown in Figure 4 (b and c)
for applying the technique on % CPU Utilization’ and ‘ Disk
Idle Time’ counters) to analysts, thereby wasting their time in
inspecting them. We use a robust and scalable statistical
technique i.e., Principal Component Analysis (PCA) [22] to
identify a few of the performance counter that capture the
maximum variation of the collected data and have the potential
to capture discontinuities in their time series counter values.

We choose PCA due to a) our previous success in using it
with performance data of a large-scale system and b) its
superior performance in identifying performance counters that
are sensitive to minute changes in both workload and
environment as compared to many other supervised and
unsupervised machine learning techniques [6]. We provide an
overview of the PCA based performance counter selection
technique in this paper. Further details are discussed in our
previous work [7]. Basically, the high level goal of using PCA
in our context is the same as using clustering: selecting the
least correlated subset of performance counters that can still
explain the maximum variations in the data, thereby
eliminating performance counters capturing little variance such
as invariants and configurations related performance counters.
The performance counters identified by PCA approach are
potentially good candidates for detecting any occurring
discontinuities. These performance counters are fed into the
next step of our approach to first detect the presence of
anomalies and then to identify discontinuities among them, if

Fig. 3. The steps involved in the proposed approach

Data
Preparation

(Sanitizing)
(Pre-processing)

 Metric
Selection

(PCA)

Anomaly
Detection

Discontinuity
Identification

(Distribution comparison)
(Effect size)

Report
(Discontinuities) Performance

Logs

any exist.

C. Anomaly Detection

Any attempt to identify what constitutes anomalous data
encounters both the difficulty of trying to categorize a very
diverse set of unexpected patterns in data according to one or
more common characteristics and the difficulty of choosing
thresholds that realistically differentiate between normal
variance in legitimate data, and unexpected potentially
anomalous patterns in that same data. Borderline cases may be
somewhat arbitrarily labelled as either anomalous, or not
anomalous, with such arbitrary labelling potentially having a
significant impact on subsequent prediction.

Some algorithms, such as regression, attempt to predict
future results from only data seen to date while others (such as
Fast Fourier Transform analysis) [35, 36] seek patterns within
training data, so as to predict future results. When seeking to
detect anomalies in recent performance data for which future
performance data is currently unavailable, we are unable to
distinguish between a temporary anomaly and a longer term
discontinuity. However, we can track the running mean and
variance within the observed data, and presume that observed
values exceeding some multiple of the variance from the mean,
or recent windowed data failing the t-test is anomalous.

When working with training data, we discover
discontinuities by presuming that discontinuities cannot be well
modelled by a low order polynomial function. Given a
performance counter time series data {v[t]}, we approximate
the series by the quadratic function f(t) = c+bt+at2 that
minimizes the least squared error (LSE). We presume that
series containing sudden dramatic changes, anomalies, or
discontinuities will not be fit as well by this approximation and
so have a larger LSE.

To discover exactly where difficulties arise in fitting this
model to the performance counter data, we begin by modelling
the performance counter’s n data points as n consecutive
quadratics fi having coefficients {c = v[ti], a = b = 0} and
consequently LSE=0. A greedy algorithm selectively replaces
pairs of consecutive quadratics modelling adjacent data by a
single quadratic until our performance counter time series is
modelled by a single quadratic.

At each step selection is chosen so that the increase in the
total LSE is minimized. Replacements with the same increase
in LSE are chosen by giving priority to those new quadratics
having smaller |ai|, then |bi|, and then if necessary modelling
shorter subsequences. At each step the two data points that
cease to be at the end of a subsequence when subsequences are
merged have a cost associated with them. This cost is simply
the total increase in the LSE of the subsequence they formally
belonged to when this subsequence is modelled by a quadratic
spanning the longer now combined pair of subsequences.
Inputs can be standardized (having mean µ=0, and variance
Ϭ2=1) if cost on different inputs must be comparable.

 Cost reflects the poor fit when unifying consecutive
subsequences at a point under a common quadratic model.
Since the total LSE is related to the length of the subsequence
unified, cost is also influenced by reluctance of our greedy
algorithm to undertake early unification at a point. Largest

costs thus suggest positions where the most egregious
anomalies/discontinuities occur as shown in Fig 5 (c, b). Using
dynamic programming optimal quadratic coefficients can be
computed at each step in constant time. Since i!!!

!!! = (n! −
n)/2 quadratics are computed, and following each
computation a total LSE is then calculated on typically far
fewer than n values, the algorithm runs in at worst Ο(n!). The
biggest problem with this algorithm is detecting and coping
with singularities when computing quadratic coefficients.
Internally 128 bit doubles are used; decrease in LSE (which
should never in theory happen) used to detect floating point
under/overflow, and linear fit preferred whenever it has a
smaller LSE.

D. Discontinuity Identification

This step of our approach filters out discontinuities among
all anomalies identified by the previous step of our approach
and is composed of the following sub-steps

1) Distribution Comparison: After the anomaly
transition period has passed, the value of the performance
counters returns back to its equilibrium state, i.e., stable state
with respect to the workload. In the event of a discontinuity,
the increase or decrease in the value of a performance counter
persists after the transition period 𝑡 as shown in Fig.1 (a, b).
This sub-step of our approach compares the distribution of a
performance counter before and after the anomaly transition
period. We use Wilcoxon rank-sum test [8] to compare the two
distributions. We choose this test because it is non-parametric
and does not require the data to be normally distributed. We
conducted Shapiro–Wilk test of normality [3] to confirm that
our data obtained from both industrial and an open source
system (discussed in section IV) is not normally distributed.
Wilcoxon rank-sum test at the significance level of 1% (i.e.,
0.01), ρ-value < 0.001 indicates that the null hypothesis (H0)
(i.e., the two distributions are same) is rejected; we can
conclude the presence of a discontinuity.

2) The Effect Size for Measuring Discontinuity: When an
anomaly transition period is long, i.e., spans over a few weeks
(e.g., slow diffusion of a memory leak) to a month (when a
recently added feature is removed or a hotfix is rolled back
when a corresponding patch is ready), the value of
performance counter will return to the equilibrium state
reflecting the normal behavior of the system under
corresponding load. However, there will be slight differences
between the counter distribution before and after the long
transition period either due to carry-over effect of an anomaly
or due to counter extrapolation rate, such as monthly growth in
workload volume and CPU consumption. In practice, analysts
do not consider such a minute difference between the
distribution as a disconnect, despite the difference being
statistically significant.

We measure the effect sizes of the difference in the
distribution of performance counter values before and after an
anomaly, in order to confirm discontinuities. Unlike Wilcoxon
rank-sum test, which only tell us if the difference of the mean
between two populations are statically significant, effect size
quantifies the difference between two populations. Research
has shown that reporting only the statistical significance may
lead to erroneous results [9] (i.e., if the sample size is very

large, p-value can be small even if the difference is trivial). We
use Cohen’s d to quantify the effect [9]. Cohen’s d measure the
effect size statically, and had been used in prior engineering
studies [9, 10]. Cohen’s d is defined as:

𝐶𝑜ℎ𝑒𝑛!𝑠 𝑑 = !!!!!
!

 (1)
Where x! and x! are the means of two populations, and s is

the pooled standard deviation [11]. The strength of the effects
and the corresponding ranges of Cohen’s d value are [12]:

𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 =

𝑡𝑟𝑖𝑣𝑖𝑎𝑙
𝑠𝑚𝑎𝑙𝑙
𝑚𝑒𝑑𝑖𝑢𝑚
𝑙𝑎𝑟𝑔𝑒

𝑖𝑓 𝐶𝑜ℎ𝑒𝑛!𝑠 𝑑 ≤ 0.2

𝑖𝑓 0.2 < 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 ≤ 0.5
𝑖𝑓 0.5 < 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 ≤ 0.8
𝑖𝑓 0.8 < 𝐶𝑜ℎ𝑒𝑛!𝑠 𝑑

 Effect size acts as a tunable threshold to reduce false
positive identification of discontinuity by our approach.
Analysts (based on their domain trends and required
granularity to train their forecast models) can set the effect size
beyond which (despite being statistically significant), the
differences between a performance counter’s distribution,
before and after the anomaly transition period is considered as
a discontinuity.

IV. CASE STUDY
The main goal of this case study is to investigate the

effectiveness of our proposed approach for identifying
discontinuities in performance data.

RQ 1. How effective is our approach in identifying
discontinuities in performance data?

Motivation: A methodology with lower recall won't be
adopted in practice since it fails to identify many of the
existing discontinuities in performance data. An approach that
produces results with high recall and low precision is not

useful either since it floods the performance analysts with too
many false positives. An ideal approach should identify
minimal and correct set of discontinuities in performance data.
We evaluated the performance of our approach using precision,
recall and F-measure.

A. Subject of Study and Environmental Setup

TABLE III lists the systems studied in this paper. In this
section, we describe the environment setup for these systems.

The Industrial System: A data center provided us with the
production performance logs of their data center spanning over
terabytes (TB). The log contained a wealth of performance
counters obtained from 5,500 grids hosting 279 companies
over the period of 7 years. The peak number of servers running
across grids in any one hour is 12,088. Maximum CPUs on a
server is 32.

The Open Source System: The second system under study
(SUS) is Dell DVD Store (DS2) application [13], which is an
open source prototype of an online e-commerce website. It is
designed for benchmarking Dell hardware. It includes basic
ecommerce functionalities such as user registrations, user
login, product search and purchase. DS2 consists of a back-end
database component, a web application component, and a
driver program (load generator). DS2 has multiple distributions
to support different languages such as PHP, JSP, and ASP and
databases such as MySQL, Microsoft SQL server, and Oracle.
In this case study, we use the JSP distribution and a MySQL
database(s). The JSP code runs in a Tomcat container. Our load
consists of a mix of transactions, including user registration,
product search and purchases. The configuration of our DS2
load generator for the baseline performance load in our
experiments is listed in Table I, to enable the replication of our
experiments.

Simulation: Practitioner of the data center provided us
with an excel sheet that had synthetic data (representation of a
performance log) along with manufactured discontinuities
generated using statistical equations and formulas. However,
they did not communicate the occurrence of manufactured
discontinuities in the data to us.

B. Fault Injection

To study our approach on realistic situations, we must
evaluate them in the presence of representative faults (i.e.,
anomalies and discontinuities). To do so, we first need to
choose the category of faults, e.g., software failures, hardware
failures and operator/human errors. Pertet et al. [14] performed
a study on performance degradation and failure occurrences in
an enterprise web service system and concluded that 80% of
the performance anomalies in large software systems are due to
software inconsistencies and human errors. Therefore, in this
paper, we injected anomalies and discontinuities along these
two categories. Table II lists the different anomalies and
discontinuities for our performance test experiments. Below,
we explain the rationale of choosing the anomalies and
discontinuities for our experiments

1) Anomalies

Memory Stress: According to BlackBerry and Mozilla, the
most common anomaly occurring in the field is related to

TABLE I. BASELINE PERFORMANCE TEST
Parameter Value

Test Duration 8 hours
Number of driver (load generator) threads 100
Start Request rate (load ramp-up rate) 5
Think time (time to complete and order) 30 seconds
Database size 100 GB
Percentage of new customers 20%
Average number of searches per order 5
Average number of items returned in each search 3
Average number of items per order 20

TABLE II. FAULT INJECTION IN OUR EXPERIMENTS
No Faults Type Experiment
1 CPU Stress Anomaly 1
2 Transient Memory Stress Anomaly 2
3 Interfering Workload Anomaly 3
4 Workload as Multiplicative Factor Discontinuity 1
5 Change in Transaction Pattern Discontinuity 2
6 Hardware Upgrade Discontinuity 3

TABLE III. THE SUBJECT OF THE STUDY
No System Domain Type of data
1 Industrial System Cloud Provider Production Data

2 Open Source E-Commerce Experiments with an open
source benchmark application

3 Simulation Cloud Synthetic Data using statistical
equations

0

10

20

30

40

50

0

10

20

30

40

50

0

1

2

3

4

5

0

1

2

3

4

5

Transient memory issues [30-31]. Transient memory issues
(memory spikes) are large increases in memory usage over a
relatively short period of time. Therefore, we choose to inject
Transient memory anomalies as one of our experiment.

CPU Stress: Large enterprises report that periodic CPU
saturation is one of the fundamental field problems [15]. CPU
saturation causes anomalous behavior in applications, i.e., not
responding fast enough and shutting down many of their
features. CPU anomalies can even cause system/applications to
crash or hang under heavy load. The CPU saturation can be
due to an unplanned increase in the workload volume. It can
also be due to software regression bug, i.e., due to an updated
feature of an application in which developers forget to remove
the additional executed logic as part of their debugging activity
[16]. Even a small set of additional calculations added to a part
of the source code which is executed frequently can produce a
dramatic increase in CPU usage.

Interfering Workload: Interfering workload anomalies are the
major cause of performance degradation in data centers (DC)
[17]. Interfering workload anomalies results from competition
for resources and occur due to various reasons; as simple as un-
announced maintenance on a cluster (e.g., security scans), or a
storage array that is performing a system operation such as
replication and RAID construction.

2) Discontinuities

The analyst of a data center indicated what they considered
the most common reasons for discontinuities. We injected the
three common discontinuities described below into our
performance test:

Workload as Multiplicative Factor: This to represents
increased business due to promotions, new products, mergers
& acquisitions of other smaller companies.

Change in Transaction Pattern: A change in transaction
pattern can cause discontinuities in both resource and SLA

counters such as response time, throughput and latency. A
transaction is composed of multiple events that execute in a
sequence and are called sequence events [18]. For example,
when a user buying an item from Amazon, the user needs to
select the items (i.e., selection event S1) first before he can
checkout (i.e., check out event C1) Moreover, he needs to put
the selected items in the shopping cart (i.e., update cart event
(U1) before checkout too. Similarly, shipping (i.e., shipping
event SH1) cannot be performed before a successful check out
to complete a transaction T1. Each sequence event in a
transaction takes some amount of time and system resources. A
new built of an application or an enterprise software deployed
in a data center can either affect the future response time of the
transaction (i.e., improved or deteriorate response time) or
resource consumption.

Hardware and Software Upgrade: Cloud computing and
data center consolidation require periodic network upgrades
because they drive more data through the same amount of
hardware. For example, a virtualized server holds multiple
virtual machines, but still only has a single network port. This
means that the bandwidth is shared between all of the VMs.
Network upgrades can resolve these issues by adding more
data throughput or optimizing existing infrastructure to meet
current needs. Such hardware upgrades are typical causes of
performance data discontinuity.

C. Experiment Design

We designed five experiments to answer our research
question. We used the framework of Thakkar et al. [15] to
automate the performance test and to ensure that the
environment remains constant throughout the experiments. We
used Thakkar framework due to its simplicity and its previous
success in practical performance testing [15]. Except for
experiment 5, which consisted of production data obtained
from the industrial partner and experiment 4, which consisted
of synthesizing data using mathematical equations, all other
performance test experiments are repeated > 30 times (as

Fig. 4. Performance counters reflecting injcted anomalies and discontinuities Legend:X-axis:Time; Y-axis:Resource utilization; : Anomaly; :Discontinuity

Fig. 5. Anomalies detected by our proposed approach Legend: X-axis: Time; Y-axis: cost

(a) (b)

(c)

(d)

(a) (b) (c) (d)

False Positive
identification of

anomalies

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
CPU

Disk

Latency

Predicted (P)
Discontinuities

Occurred (O)
Discontinuities

𝑷𝑶 = 𝑷 ∩ 𝑶

suggested by Georges et al.[19]) to ensure that measure of
variation is not misleading or incorrect, to overcome
performance counters instability during the experiments, and to
ensure consistency among our findings. The ramp-up and
ramp-down (warm up and cool down) [5, 7] periods, usually
spanning over 15 minutes were excluded from our analysis, as
the system is usually not stable during these periods during
performance tests. We used windows ‘perfmon’ [20] tool to
collect the performance data after every 15 seconds (sampling
interval) across all the eight machines. The sampling interval is
set to 15 seconds to match the sampling interval of production
performance data. All the performance tests are eight hours
long. Each performance test has 4,242,400 observations from
two hundred and twenty performance samples of counter
values. We injected three anomalies and three discontinuities in
all our experiments except experiment 5, which consist of
production data. We now detail the settings of each experiment
for faults listed in TABLE II.

Experiment 1 (CPU Stress & Workload as Multiplicative
Factor): For experiment 1, we injects the anomalies in DS2
application by triggering resource exhaustion. We ran a
performance test with the baseline workload listed in TABLE
I. Then, we slowed down the CPU of the web server using a
CPU stress tool, known as winThrottle [21]. We choose
winThrottle over other CPU stress tools because it is an open
source tool and can use features in system hardware that
directly modify the CPU clock speed, rather than using
software “delay loops” or “HLT instructions” to slow down the
machine. We injected discontinuities by triggering a system
overload, the second most common failure trigger identified by
Pretet and the most common cause of discontinuity pointed out
by practitioners. This experiment keeps the workload-mix
constant and increases the execution rate of our workload over
a significant period of time to 8X, i.e., eight times as the
baseline workload configuration.

 Experiment 2 (Memory Stress & Change in Transaction
Pattern): For experiment 2, we conducted a performance test
with the same workload as the baseline load listed in TABLE
II, but injected a memory bug into the webserver using a
customized open-source memory stress tool called EatMem
[22]. The tool allocates a random amount of available memory
at recurring intervals to mimic a Transient Memory Spike. We
also injected discontinuities in experiment 2 using change in
transaction pattern. Accessing I/O storage devices, such as hard
drives, are usually among the slowest part of a transaction.
Changes to I/O operation in an execution can even cause
performance regression (i.e., performance discontinuity) [16].
Adding log statements to execution is a common mistake [23].
Log statements are usually required when implementing a new
feature. There is a tendency to leave the log statement behind
in the source code when a change is finished. We increased the
logging for the most frequently accessed source code area in
Dell DVD Store, i.e., ‘Item Selection’ execution event thereby
causing discontinuity. In experiment 2, we have to stop the
load generator several times to enable increased levels of
logging for the Dell DVD store application. However, the
‘Perfmon’ logs the performance counters for the entire duration
of the experiment, i.e. eight hours.

Experiment 3 (Interfering Workload & Hardware
Upgrade): This experiment aims to trigger interfering workload
anomaly mostly due to procedural errors such as planning a
security scan at the time when peak workload is expected or
due to unconstrained activities such as RAID construction,
self-cleanup activities of mail stores and storage replications.
We created an interfering background workload anomaly
mimicking a situation where the administrator schedules an
antivirus scan that conflicts with the timing of the performance
test. We scanned one of the web server machines with an
antivirus every 50 minutes for 10 minutes over the course of
eight hours to perturb the main workload. To mimic the
discontinuities arising from maintenance activities such as
hardware upgrades in experiment 3, we first set an ‘Affinity’
[24] to use only two CPUs for MySQL process on all three
database servers. Periodically, for each database server, we
removed the affinity rules for the MySQL process to reflect
hardware update, i.e., addition of CPUs.

Experiment 4 (Synthetic Data): It is hard to produce cyclic
workload in a lab environment, i.e., performance counter
values that respond in a continuous wavelength pattern (i.e.,
period formation of trough and crest) to cyclic workload
stimuli. For example, Microsoft exchange server, running
MMB3 workload [25], results in CPU and DISK IOPS to
follow wavelength patters as shown in Fig. 2. (c).
Mathematical formulas in Excel are used to generate cyclic
performance countervalues (e.g., CPU utilization with respect
to the transaction volume) and manufactured discontinuities
(using statistical equations) were used to cause irregularities in
the data.

Experiment 5 (Production logs): This experiment was
conducted on the production data. The analyst of a data center
gave us performance logs spanning over seven years without
revealing the discontinuities. In particular, analysts were
interested to know how our approach performs on two of the
specific clients' data which they had already verified for the
presence of discontinuities.

D. Measure the Effectiveness of Our Approach

To evaluate the effectiveness of our approaches, we use the
following measures: Precision, Recall and F-Measure.
Precision is the ratio between correctly identified
discontinuities and predicted discontinuities in a performance
data. Recall is defined as the ratio between the number of
correctly identified discontinuities and the number of actual
discontinuities present in performance data. F-measure is
defined as a harmonic means of precision and recall [26]. F-
Measure = (𝛼 + 1) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝛼 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑅𝑒𝑐𝑎𝑙𝑙) . The value of alpha (𝛼) ranges between 0 and infinity
to give varying weights for recall and precision. For example,

Fig. 6.
Illustration of our

effectiveness measure

in this paper to indicate that recall is as important as precision,
alpha has a value of 1.0. For All our experiments (1 to 3), we
divided the performance test into equal time intervals from t1
to t10 as shown in Fig.6. For each performance experiment (1
to 3) corresponding anomaly is injected during interval t1, t2, t8,
t9 and t10 and discontinuities are injected within time interval t3,

t4, t5, t6 and t7. We also logged the exact time of all the fault
injections in a test. We now use Fig.6 as an example to explain
how we measure the precision and recall of our proposed
approach. An ideal approach should only report the intervals
during which the discontinuities occurred, i.e., O= {t3, t4, t5, t6,
t7}. We applied our

TABLE IV. THE EFFECTIVENESS OF THE PROPOSED DISCONTINUITY IDENTIFICATION APPORACH

Exp Id

Cohen’s d Effect Size
Counter Size Trivial Small Medium Large

Prec Recall F-Mes Prec Recall F-Mes Prec Recall F-Mes Prec Recall F-Mes Selected Total
1 0.50 0.80 0.68 0.66 1 0.80 1.00 1.00 1.00 1.00 1.00 1.00 20 220
2 0.60 0.90 0.72 0.8 1 0.88 1.00 1.00 1.00 1.00 1.00 1.00 20 220
3 0.80 0.80 0.80 0.91 0.88 0.95 0.95 0.88 0.91 1.00 1.00 1.00 20 220
4 0.70 0.90 0.78 1.00 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00 15 30
5 0.50 0.60 0.54 0.70 0.69 0.69 0.92 0.92 0.92 0.92 0.87 0.90 20 1256

Average 0.62 0.8 0.704 0.814 0.904 0.85 0.97 0.96 0.96 0.98 0.97 0.98 − −
approach on the three performance counters CPU, Disk, and
Latency obtained from the experiment performed and it
collect-ively predicted (among unique time intervals shown in
red) discontinuities P = {t1, t2, t3, t4}. Based on these definitions
we define: Recall = 𝑃 ∩ 𝑂 𝑂 and Precision = 𝑃 ∩ 𝑂 𝑃 .
Therefore, in the above example, Recall = 2/5 = 0.4, Precision
= 2/4= 0.5, and F-Measure = 0.44.

E. Case Study Results

We now report our findings. The Table IV shows, under
varying effect size, the effectiveness of our proposed approach.
The results are listed using the definition of our performance
measure (i.e., Precision, Recall and F-measure) for all the case
study experiments. For the first three experiments, the values
reported in Table IV are the averages of thirty runs per
experiment. The ‘Total’ counters size represents the number of
performance counters harvested from the system-under-test.
The ‘selected’ counter refers to number of performance
counters selected among the pool of Topk counters
recommended by our PCA approach that have higher
likelihood of revealing discontinuities (if any occurred) . The
main constraint on the number of Topk counters come from
practicality. The performance analysts of our industrial partner
advised us that they consider 20 performance counters as the
maximum that are manageable. Any increase in the number of
performance counters beyond 20 negatively affects the human
capability to effectively examine and confirm the underlying
discontinuities; or to understand the root-cause of an observed
discontinuity so as to adjust the parameters of forecast models
accordingly.

Overall, our approach has a higher average recall in
comparison to its precision. For experiments 1 to 4, using large
effect size, the approach performance is ideal because a) we
had limited types of discontinuities to inject, and b)
discontinuities variations (i.e., abrupt change (jump) in counter
values) are limited as compared to what is observed in the
production environment. In experiment 5 (production data), our
approach performed the best with an effect size set to
‘Medium’. Our approach is very sensitive to the variation in
the performance data therefore; the efficiency of our approach
suffers when effect size (i.e., sensitivity) is set to ‘trivial’; our
approach achieved the minimum precision of 0.50. We
investigated the rationale behind the poor performance of the
approach for ‘Trivial effect size’. We found that under extreme
load such as in experiment 1, where CPU anomaly and 8X

workload discontinuity is injected, it took a long time for CPU
counter to stabilize and return to its normal state, perturbing the
equilibrium of counter’s distribution till the next injected fault.
The proposed technique when comparing the distribution of ‘%
CPU Utilization’ before and after the transition period of
anomaly (i.e., injected fault), the technique picked up even this
minute variation (𝐶𝑜ℎ𝑒𝑛!𝑠 𝑑 ≤ 0.2) due to carryover effect
and marked it as a discontinuity.

 Similarly, for experiment 1, we also found that under
extreme CPU stress, the database server refused connection
from all of the four webservers in the system under test. This is
the default behaviour of MYSQL server under extreme stress.
The webservers facing heavy workload volume (i.e., from load
generators), a) started appending all the intermediate
transaction to the disk on priority basis, so that the transaction
are not lost and are routed to the database server as soon as the
connection is established with it. This caused the values of
“Disk-IOPS” to rise considerably higher and b) reattempted to
establish connection with MYSQL server every 10 seconds,
causing higher than normal variation in the value of the
‘NIC_controller_packet sent’ counter. Moreover, due to the
MYSQL server under stress, the transaction response time also
increased. All these unexpected variations in the performance
counter data are perceived as discontinuities by our proposed
approach when sensitivity parameter is set too low, i.e.
‘Trivial’. Our approach performed well when the effect size is
set to higher levels. This is because being the carry-over effect
of anomalies, and minute external variation such as linear
growth in counter value or its value drift over time is filtered.

All the identified discontinuities (especially for the logs of
two customers) were verified by practitioners. Our approach
performed up to the satisfaction of the practitioners. For
experiment 5, with effect size set to ‘Small’, the approach was
able to identify most of the discontinuities with precision and
recall of 0.70 and 0.69. With effect size set to ‘Medium’, the
approach performed better, i.e., achieved with excellent
balance of precision and recall (i.e., 0.92, 0.92). With effect
size set to ‘Large’, the recall of the approach suffered no
change in its precision.

V. LIMITATION AND THREATS TO VALIDITY
Sensitivity: We can tune the sensitivity of our approach to

uncover discontinuities in performance data by adjusting
effect size. Though using large effect size reduces false alarms,

this may result in an analyst overlooking significant
discontinuities. This is a general problem and an automated
technique, cannot generally decide whether an identified
discontinuity is important or is noise. Analysts have to conduct
multiple experiments with different effect size to determine the
optimal threshold for the performance data relevant to a
project, client, or his own environment.

Distinguishability: Our proposed technique cannot
distinguish between overlapping discontinuities, i.e., change is
counter’s behaviour due to multiple factors over same period of
time. Moreover, the proposed technique only identifies the
discontinuity. The analyst has to manually inspect the
discontinuity and take actions accordingly

External Validity: We used one large industrial and one
open source benchmark system to reduce the threat to validity.
However, the proposed technique cannot be generalized to
other domains such as sensory data arising from network traffic
and security monitoring requiring high confidence and
reliability in the recommendations. This is due to the fact that
there is no guarantee that direction of maximum variance (i.e.,
the use of PCA) will discover good performance counters for
identifying discontinuities. A large anomaly (such as in
network traffic) may inadvertently pollute the normal
subspace, thereby skewing the assumption that large variances
always have important dynamics. Generalizing to any other
systems, especially in other domains requires the replication of
our approach.

Construct Validity: Since our proposed approach is
evaluated, in three out of five experiments, based on injected
faults, we tried to reduce the construct validity threat by being
systematic with the fault injection process. Despite our careful
fault injection mechanism, the type of the injected faults may
not be fully representative or real faults.

Internal Validity: This study required various sets of
configurations (test environment), implementations (PCA), and
data analysis (data handling and statistical analysis).
Therefore, to reduce the internal validity threat we used
existing frameworks (e.g., Thakkar framework for automating
the performance test executions) and packages (e.g., R
statistics packages for PCA implementation study)

Conclusion Validity: Experiments 1-3 are executed 30
times each and the average of the results is taken for each
effect size. However, the differences among the results
produced by our approach might be attributable to the random
nature of the experiments. We plan to extend the study with
longer (i.e., 36 hours) and more runs per experiment so that
statistical significant test can be meaningfully applicable.

VI. RELATED WORK
Detecting anomalies in an enterprise system is not a new

problem. However, there is little work done in identifying and
diagnosing anomalies in large scales systems using such
performance data as, console logs, performance counter logs
and executions logs. Most of the work in the literature is
divided into two major dimensions, i.e., pre and post
deployment anomaly detection.

A. Pre-deployment Anomaly Detection in Large-Scale
System

 The focus work along this dimension is to help analysts to
identify and diagnose anomalies in the system early before they
become critical field problems. Closest work to ours is the
work done by Foo [4, 27] and Naguyen [16, 28]. Both use
performance counters to automate the analysis of performance
test an automatically identify performance anomalies in the
system. Foo et al. [4, 27] calculate performance signatures
from previous executions and use them as a baseline to
compare against performance signatures of new executions.
This approach is close to regression testing as it validates if
anomalies are introduced into newer software versions. They,
however, only do comparative analysis, which only provides a
Yes/No answer on performance anomalies. In contrast, our
approach can pinpoint the time duration at which the anomaly
and discontinuity occurs and for how long it prevails, i.e., its
transition period. Nguyen [16, 28] used a quality control
technique called control charts to flag the anomalies in the
performance counters using upper and lower bound limits.
Their technique requires deep understanding of the domain to
create control limit of performance counters. The variation of
the counter values within the limit is considered as normal
variation. In contrast, our approach use effect size as a tunable
threshold to identify discontinuities, and does not require an
analysts to have explicit knowledge about the acceptable limits
of all the performance counters values. Unlike our work, Jiang
[3] relies on execution logs that capture detailed information.
However, such logs are vendor and application specific. This
means, that different subsystems in a large-scale system (e.g.
web servers, databases, and mail servers) produce a variety of
execution logs, each with different levels of information and
formats. Whereas, the performance counters data, provide a
greater level of unification across subsystems and systems.
Malik et al. [6, 29] have used principal component analysis
(PCA) to generate performance signatures for each component
using performance counters captured during load test. They
assess the pair-wise correlations between the performance
signatures of a performance test and a baseline test to identify
performance anomalies and deviations. However, it’s hard to
find baselines in rapidly evolving large-scale systems.

B. Post-deployment Anomaly Detection in Large-Scale
System

The work in this dimension aim to help analyst identify
anomalies in production environment, i.e., once a system or
and enterprise application is deployed. Syers et al. [30, 31]
proposed an approach to identify performance anomalies and
deviation in thread pool using performance counters. Their
approach is limited to the detection memory related
performance anomalies in enterprise systems (e.g., memory
leaks, memory spikes and memory blots). Attariyan et al. [11]
proposed a performance summarization approach for
identifying root causes of performance anomalies based on
human errors, such as misconfigurations. They used dynamic
binary instrumentation to monitor an application as it executes
instead of execution logs or performance counters. However,
their techniques only focus on misconfigurations and do not
help to find anomalies.[32-34]. Finally, there are other
approaches [27, 29] that use annotated software models to

detect performance anomalies [30]. These approaches,
however, use software model simulations and not real
production software.

VII. CONCLUSION AND FUTUREWORK
The growth in cloud environments and virtualization has

increased the need for the forecasting techniques to better
satisfy the scalability, elasticity, and cost-effectiveness
requirements of cloud environments. The accuracy of a
forecasting technique depends of the merit of input data.
Analysts spend considerable preparing the data in order to
conduct a forecast. We propose a technique that helps analyst
automatically identify discontinuities in the performance data.
Discontinuity is a change in a time-series pattern that persists
(but does not reoccur) since the measurement taken before the
discontinuity may be irrelevant, or nearly so. Detecting
discontinuities in performance data of a data center is
important to improve the forecasts. If an analyst knows a
discontinuity has occurred, the analyst may want to ignore the
early data and base the forecast on the measurements taken
after the discontinuity. Moreover, detecting a discontinuity
provide analysts a reference point to retrain their forecasting
models and make necessary adjustments. We show how simple
statistical techniques can be used to identify discontinuities in
large performance data. A large case study on an industrial
system as well as a benchmark open source system provides
empirical evidence of the ability of our approaches to uncover
the discontinuities in performance data. In future, we will
attempt to study and categorize discontinuities with that of the
corresponding workloads.

VIII. ACKNOWLEDGMENTS

We are grateful to C.A. Technologies Inc., for supporting
and funding this research, and for providing access to the
production data used in our case study. The findings and
opinions expressed in this paper are those of the authors and do
not necessarily represent or reflect those of C.A Technologies
and/or its subsidiaries and affiliates. This work was funded in
part by a Collaborative Research and Development grant from
the National Science and Engineering Research Council of
Canada (NSERC).

REFERENCES
[1] T. Dasu and T. Johnson, Exploratory Data Mining and Data Cleaning.

John Wiley & Sons, 2003.
[2] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora and G. Hamann,

"Automatic comparison of load tests to support the performance analysis
of large enterprise systems," in 14th European Conference on Software
Maintenance and Reengineering, Madraid, Spain, 32-2010, pp. 222-231.

[3] Z. M. Jiang, "Automated analysis of load testing results," in Proceedings
of the 19th International Symposium on Software Testing and Analysis,
42-2010, pp. 143-146.

[4] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou and P. Flora,
"Mining performance regression testing repositories for automated
performance analysis," in 10th International Conference on Quality
Software, 45-2010, pp. 32-41.

[5] A. Bondi, "Automating the analysis of load test results to assess the
scalability and stability of a component," in CMG-CONFERENCE-,
2007, pp. 133.

[6] H. Malik, H. Hemmati and A. E. Hassan, "Automatic detection of
performance deviations in the load testing of large scale systems," in 35th
International Conference on Software Engineering (ICSE), 2013, pp.
1012-1021.

[7] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora and G. Hamann,

"Automatic comparison of load tests to support the performance analysis
of large enterprise systems," in Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on, 2010, pp. 222-231.

[8] F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics
Bulletin, pp. 80-83, 1945.

[9] V. B. Kampenes, T. Dybå, J. E. Hannay and D. I. Sjøberg, "A systematic
review of effect size in software engineering experiments," Information
and Software Technology, vol. 49, pp. 1073-1086, 2007.

[10] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam and J. Rosenberg, "Preliminary guidelines for
empirical research in software engineering," IEEE Trans. Software Eng.,
pp. 721-734, 2002.

[11] J. Hartung, G. Knapp and B. K. Sinha, Statistical Meta-Analysis with
Applications. John Wiley & Sons, 2011.

[12] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
Routledge Academic, 2013.

[13] D. Jaffe and T. Muirhead, The Open Source DVD Store Application,
2005.

[14] S. Pertet and P. Narasimhan, "Causes of failure in web applications,"
Parallel Data Laboratory, Carnegie Mellon University, CMU-PDL-05-
109, .

[15] D. Thakkar, A. E. Hassan, G. Hamann and P. Flora, "A framework for
measurement based performance modeling," in WOSP '08: Proceedings
of the 7th International Workshop on Software and Performance,
Princeton, NJ, USA, 2008, pp. 55-66.

[16] T. H. Nguyen, M. Nagappan, A. E. Hassan, M. Nasser and P. Flora, "An
industrial case study of automatically identifying performance regression-
causes," in Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 232-241.

[17] C. Delimitrou and C. Kozyrakis, "iBench: Quantifying interference for
datacenter applications," in IEEE International Symposium on Workload
Characterization (IISWC), 2013, pp. 23-33.

[18] Z. M. Jiang, A. E. Hassan, G. Hamann and P. Flora, "An automated
approach for abstracting execution logs to execution events," 43, vol. 20,
pp. 249-267, 43-2008.

[19] A. Georges, D. Buytaert and L. Eeckhout, "Statistically rigorous java
performance evaluation," ACM SIGPLAN Notices, vol. 42, pp. 57-76,
2007.

[20] M. Knop, J. Schopf and P. Dinda, "Windows performance monitoring
and data reduction using watchtower," in 11th IEEE Symposium on High-
Performance Distributed Computing (HPDC11), 35-2002, .

[21] Leyda, M. and Geiss, R., "WinThrottle," 2010.
[22] E. James McCaffrey. (). . Available: http://msdn.microsoft.com/en-

us/magazine/cc163613.aspx.
[23] H. W. Gunther, "Websphere application server development best

practices for performance and scalability," IBM WebSphere Application
Server Standard and Advanced Editions-White Paper, 2000.

[24] A. Foong, J. Fung and D. Newell, "An in-depth analysis of the impact of
processor affinity on network performance," in Proceedings. 12th IEEE
International Conference on Networks, 2004, pp. 244-250.

[25] S. Stanford, "MMB3 Comparative Analysis–White Paper," 2003.
[26] J. F. Limbrunner, R. M. Vogel and L. C. Brown, "Estimation of harmonic

mean of a lognormal variable," J. Hydrol. Eng., vol. 5, pp. 59-66, 2000.
[27] K. C. D. Foo. Automated discovery of performance regressions in

enterprise applications. 2011. Available:
http://sail.cs.queensu.ca/publications/pubs/masterthesis2011_foo.pdf.

[28] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser and P.
Flora, "Automated verification of load tests using control charts," in 18th
Asia Pacific Software Engineering Conference (APSEC), 2011, pp. 282-
289.

[29] H. Malik, B. Adams and A. E. Hassan, "Pinpointing the subsystems
responsible for the performance deviations in a load test," in IEEE 21st
International Symposium on Software Reliability Engineering (ISSRE),
2010, San Jose, California, USA, 30-2010, pp. 201-210.

[30] M. D. Syer, B. Adams and A. E. Hassan, "Identifying performance
deviations in thread pools," in Software Maintenance (ICSM), 2011 27th
IEEE International Conference on, 2011, pp. 83-92.

[31] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser and P.
Flora, "Leveraging performance counters and execution logs to diagnose
memory-related performance issues," in 29th IEEE International
Conference on Software Maintenance (ICSM) , 2013, pp. 110-119.

[32] L. Cherkasova, K. Ozonat, N. Mi, J. Symons and E. Smirni, "Automated
anomaly detection and performance modeling of enterprise applications,"

09, vol. 27, pp. 1-32, 09-2009.
[33] G. F. Creţu-Ciocârlie, M. Budiu and M. Goldszmidt, "Hunting for

problems with artemis," in Proceedings of the First USENIX Conference
on Analysis of System Logs, 39-2008, pp. 2-10.

[34] R. Gunasekaran, D. A. Dillow, G. M. Shipman, D. E. Maxwell, J. J. Hill,
B. H. Park and A. Geist, "Correlating log messages for system
diagnostics," in Cray Users Group Conference, Edinburgh, United
Kingdom, 2010, pp. 1-10.

[35] I. Davis, H. Hemmati, Ric. Holt, Michael. Godfrey, D. Neuse, Serge.
Mankovskii, “An Empirical Investigation of An Adaptive Utilization
Prediction Algorithm”, 23rd Annual International Conference on
Computer Science and Software Engineering, Canada, 2013.

[36] I. Davis, H. Hemmati, Ric. Holt, Michael. Godfrey, D. Neuse, Serge.
Mankovskii, “Strom Prediction in a Cloud”, 5th International Workshop
on Principles of Engineering Service-Oriented Systems, USA, 2013.

